Skip to main content
Log in

Auxin is involved in the regulation of leaf and root development by LAF1 under short day conditions

  • Published:
Biologia Plantarum

Abstract

LAF1 (Long after far-red radiation 1) is a R2R3 Myb transcription factor and a signal transducer of far-red radiation. To investigate the role of LAF1 in leaf and root development, the leaf growth and vein patterning in laf1 mutants under short day conditions were examined. The length of rosette leaves was reduced and the width of the midvein was increased in laf1 mutants compared to their wild-type (WT) counterparts. In addition, cell size and cell number were both decreased in the laf1 mutant in comparison to the WT plant. A comparative analysis of gene expression showed that the transcript levels of PIN and IAA genes, encoding auxin carrier and response proteins, were decreased in laf1 mutants. LAF1 expression was also shown to be induced by 1-naphthaleneacetic acid. These results suggest that both auxin transport and auxin responses are impaired in laf1 mutants, and that LAF1 is involved in the regulation of leaf and root development mediated by auxin signaling under short day conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FR:

far-red

HFCA:

9-hydroxyfluorene-9-carboxylic acid

IAA:

indole-3-acetic acid

NAA:

1-naphthaleneacetic acid

NPA:

N 1-naphtylphtalamic acid

RT-PCR:

real time polymerase chain reaction

TIBA:

2,3,5-triiodobenzoic acid

References

  • Ballesteros, M. L., Bolle, C., Lois, L. M., Moore, J. M., Vielle-Calzada, J. P., Grossniklaus, U., Chua, N. H.: LAF1, a MYB transcription activator for phytochrome A signaling. — Genes Dev. 15: 2613–2625, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao. R., Bennett. M., Sandberg, G., Bellini, C.: The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. — Proc. nat. Acad. Sci. USA 97: 14819–14824, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Benjamins, R., Scheres, B.: Auxin: the looping star in plant development. — Annu Rev Plant Biol. 59: 443–465, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Canamero, R.C., Bakrim, N., Bouly, J.P., Garay, A., Dudkin, E.E., Habricot, Y., Ahmad, M.: Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. — Planta 224: 995–1003, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Chory, J., Fankhauser, C.: Light signal transduction in higher plants. — Annu. Rev. Genet. 38: 87–117, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Y., Dai, X., Zhao, Y.: Auxin biosynthesis by the Yucca flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. — Genes Dev. 20: 1790–1799, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Clack, T., Mathews, S., Sharrock, R.A.: The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. — Plant mol. Biol. 25: 413–427, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. — Plant J. 16: 735–743, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cluis, C.P., Mouchel, C.F., Hardtke, C.S.: The Arabidopsis transcription factor HY5 integrates light and hormone signalling pathways. — Plant J. 38: 332–347, 2004.

    Article  PubMed  CAS  Google Scholar 

  • De Smet, I., Jürgens, G.: Patterning the axis in plants — auxin in control. — Curr. Opin. Genet. Dev. 17: 337–343, 2007.

    Article  PubMed  Google Scholar 

  • Devlin, P.F., Yanovsky, M.J., Kay, S.A.: A genomic analysis of the shade avoidance response in Arabidopsis. — Plant Physiol. 133: 1617–1629, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ďurkovič, J., Bukovská, J.: Adventitious performance in micropropagated Cornus mas. — Biol. Plant. 53: 715–718, 2009.

    Article  Google Scholar 

  • Haughn, G.W., Sommerville, C.: Sulfonylurea-resistant mutants of Arabidopsis thaliana. — Mol. gen. Genet. 204: 430–434, 1986.

    Article  CAS  Google Scholar 

  • Hamann, T., Mayer, U., Jürgens, G.: The auxin-insensitive bodenlos mutation affects primary root formation and apicalbasal patterning in the Arabidopsis embryo. — Development 126: 1387–1395, 1999.

    PubMed  CAS  Google Scholar 

  • Hobbie, L., McGovern, M., Hurwitz, L.R., Pierro, A., Liu, N.Y., Bandyopadhyay, A., Estelle, M.: The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. — Development 127: 23–32, 2000.

    PubMed  CAS  Google Scholar 

  • Jang, I.-C., Yang, J.-Y., Seo, H.S., Chua, N.-H.: HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev. 19: 593–602, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Jang, I.-C., Yang, S.W., Yang, J.Y., Chua, N.-H.: Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling. — Genes Dev. 21: 2100–2111, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Laxmi, A., Pan, J., Morsy, M., Chen, R.: Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. — PloS One 3: e1510, 2008.

    Article  PubMed  Google Scholar 

  • Lin, R., Wang, H.: Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. — Plant Physiol. 138: 949–964, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Mattsson, J., Sung, Z.R., Berleth T.: Responses of plant vascular systems to auxin transport inhibition. — Development 126: 2979–2991, 1999.

    PubMed  CAS  Google Scholar 

  • Paponov, I.A., Teale, W.D., Trebar, M., Blilou, I., Palme, K.: The PIN auxin efflux facilitators: evolutionary and functional perspectives. — Trends Plant Sci. 10: 170–177, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Peres, L.E.P., Zsögön, A., Kerbauy, G.B.: Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with high sucrose and mannitol content. — Biol. Plant. 53: 560–564, 2009.

    Article  CAS  Google Scholar 

  • Przemeck, G.K., Mattsson, J., Hardtke, C.S., Sung, Z.R., Berleth, T.: Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. — Planta 200: 229–237, 2006.

    Google Scholar 

  • Raven, J.A.: Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. — New Phytol. 74: 163–172, 1975.

    Article  CAS  Google Scholar 

  • Rubery, P.H., Sheldrake, A.R.: Carrier-mediated auxin transport. — Planta 118: 101–121, 1974.

    Article  CAS  Google Scholar 

  • Salisbury, F.J., Hall, A., Grierson, C.S., Halliday, K.J.: Phytochrome coordinates Arabidopsis shoot and root development. — Plant J. 50: 429–438, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Seo, H.S., Watanabe, E., Tokutomi, S., Nagatani, A., Chua, N.H.: Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. — Genes Dev. 18: 617–622, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Seo, H.S., Yang, J.-Y., Ishikawa, M., Bolle, C., Ballesteros, M., Chua, N.-H.: LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. — Nature 423: 995–999, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Sharrock, R.A., Quail, P.H.: Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. — Genes Dev. 3: 1745–1757, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sibout, R., Sukumar, P., Hettiarachchi, C., Holm, M., Muday, G.K., Hardtke, C.S.: Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. — PLoS Genet. 2: e202, 2006.

    Article  PubMed  Google Scholar 

  • Sidler, M., Hassa, P., Hasan, S., Ringli, C., Dudler, R.: Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. — Plant Cell 10: 1623–1636, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sieburth, L.E.: Auxin is required for leaf vein pattern in Arabidopsis. — Plant Physiol. 121: 1179–1190, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sieburth, L.E., Deyholos, M.K.: Vascular development: the long and winding road. — Curr. Opin. Plant Biol. 9: 48–54, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Teale, W.D., Paponov, I.A., Palme, K.: Auxin in action: signalling, transport and the control of plant growth and development. — Nat. Rev. mol. Cell. Biol. 7: 847–859, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Tian, Q., Uhlir, N.J., Reed, J.W.: Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. — Plant Cell 14: 301–319, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Tian, Q., Nagpal, P., Reed, J.W.: Regulation of Arabidopsis SHY2/IAA3 protein turnover. — Plant J. 36: 643–651, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Christensen, S.K., Fankhauserm, C., Cashman, J.R., Cohen, J.D., Weigel, D., Chory, J.: A role for flavin monooxygenase-like enzymes in auxin biosynthesis. — Science 291: 306–309, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (Nos. 2009-0070816 and F00003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, B.S., Sang, W.G., Song, J.T. et al. Auxin is involved in the regulation of leaf and root development by LAF1 under short day conditions. Biol Plant 55, 647–652 (2011). https://doi.org/10.1007/s10535-011-0163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0163-y

Additional key words

Navigation