Skip to main content
Log in

Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The role of peroxisomes in the oxidative injury induced by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in leaves of pea (Pisum sativum L.) plants was studied. Applications of (2,4-D) on leaves or to root substrate increased the superoxide radical production in leaf peroxisomes. Foliar application also increased H2O2 contents in leaf peroxisomes. Reactive oxygen species (ROS) overproduction was accompanied by oxidative stress, as shown by the changes in lipid peroxidation, protein carbonyls, total and protein thiols, and by the up-regulation of the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, catalase, glucose 6-phosphate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. Foliar or root 2,4-D applications also induced senescence symptoms in pea leaf peroxisomes, as shown by the decrease of protein content and glycolate oxidase and hydroxypyruvate reductase activities, and by the increase of endopeptidase, xanthine oxidase, isocitrate lyase and acyl-CoA oxidase activities as well as of 3-ketoacyl-CoA thiolase and thiol-protease protein contents. 2,4-D did not induce proliferation of pea leaf peroxisomes but induced senescence-like morphological changes in these organelles. Results suggest that peroxisomes might contribute to 2,4-D toxicity in pea leaves by overproducing cell-damaging ROS and by participating actively in 2,4-D-induced leaf senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

C=O:

protein carbonyls

DAB:

3,3′-diaminobenzidine

2,4-D:

2,4-dichlorophenoxyacetic acid

EP:

endoproteolytic activity

F4d:

4-d foliar treatment

GOX:

glycolate oxidase

G6PDH:

glucose 6-phosphate dehydrogenase

GR:

glutathione reductase

HPR:

hydroxypyruvate reductase

ICDH:

NADP+-dependent isocitrate dehydrogenase

ICL:

isocitrate lyase

JA:

jasmonic acid

KAT:

3 keto-acylCoA thiolase

Leu-AP:

leucine aminopeptidase

LP:

lipid peroxidation

O2 ·− :

superoxide radical

R4d:

4-d root treatment

R7d:

7-d root treatment

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TP:

thiol-protease

XOD:

xanthine oxidase

References

  • Abdellatif, A.G., Préat, V., Vamecq, J., Nilsson, R., Roberfroid, M.: Peroxisome proliferation and modulation of rat liver carcinogenesis by 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopin. — Carcinogenesis 11: 1899–1902, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Archer, E.K., Ting, B.L.: A virescent plastid mutation in tobacco decreases peroxisome enzyme activities in seedlings. — J. Plant Physiol. 149: 520–526, 1996.

    CAS  Google Scholar 

  • Baker, A., Graham, I.A. (ed.): Plant Peroxisomes, Biochemistry, Cell Biology and Biotechnological Applications. — Kluwer Academic Publishers, Dordrecht 2002.

    Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Buege, J.A., Aust, S.D.: Microsomal lipid peroxidation. — Methods Enzymol. 52: 302–310, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Bunkelman, R.J., Trelease, R.N.: Ascorbate peroxidase: a prominent membrane protein in oilseed glyoxysomes. — Plant Physiol. 110: 589–598, 1996.

    Article  Google Scholar 

  • Carrasco, P., Carbonell, J.: Changes in the level of peptidase activities in pea ovaries during senescence and fruit set induced by gibberellic acid. — Plant Physiol. 92: 1070–1074, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, M.C., Sandalio, L.M., Del Río, L.A., León, J.: Peroxisome proliferation, wound activated responses and expression of peroxisome-associated genes are crossregulated but uncoupled in Arabidopsis thaliana. — Plant Cell Environ. 31: 492–505, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Corpas, F.J., Barroso, J.B., Sandalio, L.M., Distefano, S., Palma, J.M., Lupiáñez, J.A., Del Río, L.A.: A dehydrogenasemediated recycling system of NADPH in plant peroxisomes. — Biochem. J. 330: 777–784, 1998.

    PubMed  CAS  Google Scholar 

  • Corpas, F.J., Palma, J.M., Del Río, L.A.: Evidence for the presence of proteolytic activity in peroxisomes. — Eur. J. Cell Biol. 61: 81–85, 1993.

    PubMed  CAS  Google Scholar 

  • Corpas, F.J., Palma J.M., Sandalio, L.M., Valderrama, R., Barroso, J.B., Del Río, L.A.: Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. — J. Plant Physiol. 168: 1319–1330, 2008.

    Article  Google Scholar 

  • Dat, J.F., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell. Mol. Life Sci. 57: 779–795, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Delker, C., Zolman, B.K., Miersch, O., Wasternak, C.: Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal β- oxidation enzymes — additional proof by properties of pex6 and aim1. — Phytochemistry 68: 1642–1650, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Del Río, L.A., Palma, J.M., Sandalio, L.M., Corpas, F.J., Pastori, G.M., Bueno, P., López-Huertas, E.: Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. — Biochem. Soc. Trans. 24: 434–438, 1996.

    PubMed  Google Scholar 

  • Del Río, L.A., Pastori, G.M., Palma, J.M., Sandalio, L.M., Sevilla, F., Corpas, F.J., Jiménez, A., López-Huertas, E., Hernández, J.A.: The activated oxygen role of peroxisomes in senescence. — Plant Physiol. 116: 1195–1200, 1998.

    Article  PubMed  Google Scholar 

  • Del Río, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., Barroso, J.B.: Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. — Plant Physiol. 141: 330–335, 2006.

    Article  PubMed  Google Scholar 

  • Distefano, S., Palma, J.M., McCarthy, I., Del Río, L.A.: Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. — Planta 209: 308–313, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, E.A., Rawsthorne, S.R., Mullineaux, P.M.: Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). — Planta 180: 278–284, 1990.

    Article  CAS  Google Scholar 

  • Espandiari, P., Thomas, V.A., Glauert, H.P., O’Brien, M., Noonan, D., Robertson, L.W.: The herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) is a peroxisome proliferator in rats. — Fund. appl. Toxicol. 26: 85–90, 1995.

    Article  CAS  Google Scholar 

  • Fedina, I.S., Nedeva, D., Çiçek, N.: Pre-treatment with H2O2 induces salt tolerance in barley seedlings. — Biol. Plant. 53: 321–324, 2009.

    Article  CAS  Google Scholar 

  • Fischer, A., Brouquisse, R., Raymond, P.: Influence of senescence and of carbohydrate levels on the pattern of leaf proteases in purple nutsedge (Cyperus rotundus). — Physiol. Plant. 102: 385–395, 1998.

    Article  CAS  Google Scholar 

  • Frew, J.E., Jones, P., Scholes, G.: Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solutions. — Anal. chim. Acta 155: 139–150, 1983.

    Article  CAS  Google Scholar 

  • Gerhardt, B.: Localization of β-oxidation enzymes in peroxisomes isolated from nonfatty plant tissues. — Planta 159: 238–246, 1983.

    Article  CAS  Google Scholar 

  • Goldberg, D.M., Ellis, G.: Isocitrate — In: Bergmeyer H.U. (ed.): Methods in Enzymatic Analysis. Pp. 183–190. Academic Press, New York 1983.

    Google Scholar 

  • Grossmann, K., Kwiatkowski, J., Tresch, S.: Auxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.). — J. exp. Bot. 52: 1811–1836, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Grossmann, K., Rosenthal, C., Kwiatowski, J.: Increases in jasmonic acid caused by indole-3-acetic acid and auxin herbicides in cleavers (Gallium aparine). — J. Plant Physiol. 161: 809–814, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hao, F., Wang, X., Chen, J.: Involvement of plasma-membrane NADPH-oxidase in nickel-induced oxidative stress in roots of wheat seedlings. — Plant Sci. 170: 151–158, 2006.

    Article  CAS  Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C. (ed.): Free Radicals in Biology and Medicine. — Oxford University Press, Oxford 2007.

    Google Scholar 

  • Hodgson, R.A.J., Raison, J.K.: Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling-induced photoinhibition. — Planta 183: 222–228, 1991.

    Article  CAS  Google Scholar 

  • Hung, S.H., Yu, C.W., Lin, C.H.: Hydrogen peroxide functions as a stress signal in plants. — Bot. Bull. Acad. sin. 46: 1–10, 2005.

    CAS  Google Scholar 

  • Jiménez, A., Hernández, J.A., Del Río, L.A., Sevilla, F.: Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. — Plant Physiol. 114: 275–284, 1997.

    PubMed  Google Scholar 

  • Kato, Y., Hayashi, M., Takeuchi, Y., Nishimura, M.: cDNA cloning and expression of a gene for 3-ketoacyl-CoA thiolase in pumpkin cotyledons. — Plant mol. Biol. 31: 843–852, 1996.

    Article  PubMed  CAS  Google Scholar 

  • León, J.: Peroxisome proliferation in Arabidopsis. The challenging identification of ligand perception and downstream signalling is closer. — Plant Signal. Behaviour 3: 671–673, 2008.

    Article  Google Scholar 

  • Levine, R.L., William, J.A., Stadtman, E.R., Shacter, E.: Carbonyl assays for determination of oxidatively modified proteins. — Methods Enzymol. 233: 346–363, 1991.

    Article  Google Scholar 

  • Lock, E.A., Mitchell, A.M., Elcombe, C.R.: Biochemical mechanisms of induction of hepatic peroxisome proliferation. — Annu. Rev. Pharmacol. Toxicol. 29: 145–163, 1989.

    Article  PubMed  CAS  Google Scholar 

  • López-Huertas, E., Charlton, W.L., Johnson, B., Graham, I.A., Baker, A.: Stress induces peroxisome biogenesis genes. — EMBO J. 19: 6770–6777, 2000.

    Article  PubMed  Google Scholar 

  • López-Huertas, E., Corpas, F.J., Sandalio, L.M., Del Río, L.A.: Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. — Biochem. J. 337: 531–536, 1999.

    Article  PubMed  Google Scholar 

  • López-Huertas, E., Sandalio, L.M., Del Río L.A.: Integral membrane polypeptides of pea leaf peroxisomes: characterization and response to plant stress. — Plant Physiol. Biochem. 33: 295–302, 1995.

    Google Scholar 

  • Maia, J., Costa de Macedo, C., Voigt, E., Freitas, J., Silveira, J.: Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. — Biol. Plant. 54: 159–163, 2010.

    Article  CAS  Google Scholar 

  • McCarthy, I., Romero-Puertas, M.C., Palma, J.M., Sandalio, L.M., Corpas, F.J., Gómez, M., Del Río, L.A.: Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. — Plant Cell Environ. 24: 1065–1073, 2001.

    Article  CAS  Google Scholar 

  • McCarthy-Suárez, I.: Estudio del Estrés Oxidativo Inducido por el 2,4-D (ácido 2,4-diclorofenoxiacético) en Plantas de Guisante (Pisum sativum L.) y Peroxisomas de Hojas [Study of the Oxidative Stress Induced by 2,4-D (2,4-dichlorophenoxyacetic acid) in Pea Plants and Pea Leaf Peroxisomes]. — PhD Thesis, University of Granada, Granada 2004. [In Span. ]

    Google Scholar 

  • McCord, J.M., Fridovich, I.: Superoxide dismutase: an enzymic function for erythrocuprein. — J. biol. Chem. 244: 6049–6055, 1969.

    PubMed  CAS  Google Scholar 

  • Minibayeba, F.V., Kolesnikov, O.P., Gordon, L.K.: Contribution of a plasma membrane redox system to the superoxide production by wheat root cells. — Protoplasma 205: 101–106, 1998.

    Article  Google Scholar 

  • Nishimura, M., Takeuchi, Y., De Bellis, L., Hara-Nishimura, I.: Leaf peroxisomes are directly transformed to glyoxysomes during senescence. — Protoplasma 175: 131–137, 1993.

    Article  Google Scholar 

  • Palma, J.M., Garrido, M., Rodríguez-García, M.I., Del Río L.A.: Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. — Arch. Biochem. Biophys. 287: 68–74, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., Del Río, L.A.: Plant proteases, protein degradation and oxidative stress: role of peroxisomes. — Plant Physiol. Biochem. 40: 521–530, 2002.

    Article  CAS  Google Scholar 

  • Pastori, G.M., Del Río, L.A.: Natural senescence of pea leaves: an activated oxygen-mediated function for peroxisomes. — Plant Physiol. 113: 411–418, 1997.

    PubMed  CAS  Google Scholar 

  • Patra, J., Lenka, M., Panda, B.B.: Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc. — New Phytol. 128: 165–171, 1994.

    Article  CAS  Google Scholar 

  • Purvis, A.C., Shewfelt, R.L., Gegogeine, J.W.: Superoxide production by mitochondria isolated from green bell pepper fruit. — Physiol. Plant. 94: 743–749, 1995.

    Article  CAS  Google Scholar 

  • Quartacci, M.F., Cosi, E., Navari-Izzo, F.: Lipids and NADHdependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. — J. exp. Bot. 52: 77–84, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan, K.V.: Purification of bovine milk xanthine oxidase. — In: Greenwald R.A. (ed.): Handbook of Methods for Oxygen Radical Research. Pp. 21–23. CRC Press, Boca Raton 1985.

    Google Scholar 

  • Romero-Puertas, M.C., McCarthy, I., Gómez, M., Sandalio, L.M., Corpas, F.J., Del Río, L.A., Palma, J.M.: Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. — Plant Cell Environ. 27: 1135–1148, 2004.

    Article  CAS  Google Scholar 

  • Schrader, M., Fahimi, H.D.: Peroxisomes and oxidative stress. — Biochim. biophys. Acta 1763: 1755–1766, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Schwitzguebel, J.P., Siegenthaler, P.A.: Purification of peroxisomes and mitochondria from spinach leaf by Percoll gradient centrifugation. — Plant Physiol. 75: 670–674, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Segura-Aguilar, J., Hakman, I., Rydström, J.: Studies on the mode of action of the herbicidal effect of 2,4,5-trichlorophenoxyacetic acid on germinating Norway spruce. — Environ. exp. Bot. 35: 309–319, 1995.

    Article  CAS  Google Scholar 

  • Simonovičová, M., Huttová, J., Mistrík, I., Široká, B., Tamás, L.: Peroxidase-mediated hydrogen peroxide production in barley roots grown under stress conditions. — Plant Growth Regul. 44: 267–275, 2004.

    Article  Google Scholar 

  • Sivakumar, P., Gnanam, R., Ramakrishnan, K., Manickam, A.: Somatic embryogenesis and regeneration of Vigna radiata. — Biol. Plant. 54: 245–251, 2010.

    Article  Google Scholar 

  • Sunohara, Y., Matsumoto, H.: Oxidative injury induced by the herbicide quinclorac on Echinochloa orizycola Vasing. and involvement of antioxidative ability in its highly selective action in grass species. — Plant Sci. 167: 597–606, 2004.

    Article  CAS  Google Scholar 

  • Sunohara, Y., Matsumoto, H.: Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue. — Phytochemistry 69: 2312–2319, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Yang, Z.M., Zhang, Q.F., Li, J.L.: Enhanced chilling tolerance in Zoysia matrella by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine. — Biol. Plant. 53: 179–182, 2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ERDF-cofinanced grants AGL2002-00988 and BIO-192 from the Ministry of Education and Science and Junta de Andalucía, respectively. I. McCarthy-Suárez wishes to acknowledge the Fundación Ramón Areces for a PhD fellowship. The valuable comments of Dr. J. Carbonell and Dr. M.A. Blázquez, Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain, are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. McCarthy-Suárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy-Suárez, I., Gómez, M., Del Río, L.A. et al. Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants. Biol Plant 55, 485–492 (2011). https://doi.org/10.1007/s10535-011-0114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0114-7

Additional key words

Navigation