Advertisement

Biologia Plantarum

, Volume 55, Issue 2, pp 357–360 | Cite as

Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures

  • M. H. Mirjalili
  • E. Moyano
  • M. Bonfill
  • R. M. Cusido
  • J. PalazónEmail author
Brief Communication

Abstract

Squalene synthase (SS) dimerizes two molecules of farnesyl diphosphate to synthesize squalene, a shared precursor in steroid and triterpenoid biosynthesis in plants. The SS1 gene encoding SS from Arabidopsis thaliana was introduced in Withania coagulans under the control of the CaMV35S promoter together with the T-DNA of Agrobacterium rhizogenes A4. The engineered hairy roots were studied for withanolide production and phytosterol accumulation and the results were compared with those obtained from control roots harbouring only the T-DNA from pRiA4. The increased capacity of the engineered roots for biosynthesizing phytosterols and withanolides was strongly related with the expression level of the transgene, showing the effectiveness of overexpressing 35SS1 to increase triterpenoid biosynthesis.

Additional key words

Agrobacterium rhizogenes phytosterols Solanaceae withaferin A withanolide A 

Abbreviations

CaMV

cauliflower mosaic virus

HPLC

high performance liquid chromatography

MS

Murashige and Skoog

PCR

polymerase chain reaction

SS

squalene synthase

WFA

withaferin A

WNA

withanolide A

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the Serveis Cientificotècnics of the University of Barcelona for their support and Dr. Boronat’s group for the construction of the pBIs SS1 vector. This research has been supported by grants from the Spanish MEC and Generalitat of Catalonia (BIO2005-05583; BIO2008-01210; 2009 SGR 1217).

References

  1. Bandyopadhyay, M., Jha, S., Tepfer, D.: Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. — Plant Cell Rep. 26: 599–609, 2007.PubMedCrossRefGoogle Scholar
  2. Bargagna-Mohan, P., Hamza, A., Kim, Y., Ho, Y.K., Mor-Vaknin, N., Wendschlag, N., Liu, J., Evans, R., Markovitz, D., Zhan, C.: The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. — Cell. Press 14: 623–634, 2007.Google Scholar
  3. Chaurasiya, N.D., Uniyal, G.C., Lal, P., Misra, L., Sangwan, N.S., Tuli, R., Sangwan, R.S.: Analysis of withanolides in root and leaf of Withania somnifera by HPLC with photodiode array and evaporative light scattering detection. — Phytochem. Anal. 19: 148–154, 2008.PubMedCrossRefGoogle Scholar
  4. De Keyser, E., De Riek, J., Van Bockstaele, E.: Optimization of relative quantitative RT-PCR for expression analysis in azalea flowers colour spots. — Acta Hort. 651: 91–96, 2004.Google Scholar
  5. Kapoor, L.D.: Handbook of Ayurvedic Medicinal Plants. — CRC Press, London 2001.Google Scholar
  6. Karami, O., Esna-Ashari, M., Karami Kurdistani, G., Aghavaisi, B.: Agrobacterium-mediated genetic transformation of plants: the role of host. — Biol. Plant. 53: 201–212, 2009.CrossRefGoogle Scholar
  7. Kribii, R., Arró, M., Del Arco, A., González, V., Balcells, L., Delourme, D., Ferrer, A., Karst, F., Boronat, A.: Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase. — Eur. J. Biochem. 249: 61–69, 1997.PubMedCrossRefGoogle Scholar
  8. Lee, M.H., Jeong, J.H., Seo, J.W., Shin, C.G., Kim, Y.S., In, J.G., Yang, D.C., Yi, J.S., Choi, Y.E.: Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. — Plant Cell Physiol. 45: 976–984, 2004.PubMedCrossRefGoogle Scholar
  9. Mangas, S., Moyano, E., Osuna, L., Cusido, R.M., Bonfill, M., Palazon, J.: Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. — Biotechnol. Lett. 30: 1853–1859, 2008.PubMedCrossRefGoogle Scholar
  10. Mirjalili, M.H., Fakhr-Tabatabaei, S.M., Bonfill, M., Alizadeh, H., Cusido, R.M., Ghassempour, A., Palazon, J.: Morphology and withanolide production of Withania coagulans hairy root cultures. — Eng. Life. Sci. 9: 197–204, 2009a.CrossRefGoogle Scholar
  11. Mirjalili, M.H., Moyano, E., Bonfill, M., Cusido, R.M., Palazon, J.: Streoidal lactones from Withania somnifera, an ancient plant for novel medicine. — Molecules 14: 2373–2393, 2009b.PubMedCrossRefGoogle Scholar
  12. Moyano, E., Fornalé, S., Palazon, J., Cusidó, R.M., Bonfill, M., Morales, C., Piñol, M.T.: Effect of Agrobacterium rhizogenes T-DNA on alkaloid production in Solanaceae plants. — Phytochemistry 52: 1287–1292, 1999.CrossRefGoogle Scholar
  13. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant 15: 473–497, 1962.CrossRefGoogle Scholar
  14. Murthy, H.N., Dijkstra, C., Anthony, P., White, D.A., Davey, M.R., Power, J.B., Hahn, E.J., Paek, K.Y.: Establishment of Withania somnifera hairy root cultures for the production of withanolide A. — J. Integr. Plant Biol. 50: 975–981, 2008.PubMedCrossRefGoogle Scholar
  15. Palazon, J., Navarro-Ocaña, A., Hernandez-Vazquez, L., Mirjalili, M.H.: Application of metabolic engineering to the production of scopolamine. — Molecules 13: 1722–1742, 2008.PubMedCrossRefGoogle Scholar
  16. Sangwan, R.S., Chaurasiya, N.D., Lal, P., Misra, L., Tuli, R., Sangwan, N.S.: Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant ashwagandha (Withania somnifera). — Physiol. Plant 133: 278–287, 2008.PubMedCrossRefGoogle Scholar
  17. Seo, J.W., Jeong, J.H., Shin, C.H., Lo, S.C., Han, S.S., Yu, K.W., Harada, E., Han, J.Y., Jeong, Y., Choi, Y.E.: Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. — Phytochemistry 66: 869–877, 2005.PubMedCrossRefGoogle Scholar
  18. Sharada M., Ahuja, A., Suri, K.A., Vij, S.P., Khajuria, R.K., Verma, V., Kumar, A.: Withanolide production by in vitro cultures of Withania somnifera and its association with differentiation. — Biol. Plant. 51: 161–164, 2007.CrossRefGoogle Scholar
  19. Tiwari, R.K., Trivedi, M., Guang, Z.C., Guo, G.Q., Zhen, G.C.: Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. — Biol. Plant. 52: 26.35, 2008.CrossRefGoogle Scholar
  20. Tohda, C., Komatsu, K., Kuboyama, T.J.: Scientific basis for the anti-dementia drugs of constituents from Ashwagandha (Withania somnifera). — J. Tradit. Med. 22: 176–182, 2005.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. H. Mirjalili
    • 1
  • E. Moyano
    • 2
  • M. Bonfill
    • 3
  • R. M. Cusido
    • 3
  • J. Palazón
    • 3
    Email author
  1. 1.Department of Agriculture, Medicinal Plants and Drugs Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Departament de Ciencies Experimentals i de la Salut.Universitat Pompeu FabraBarcelonaSpain
  3. 3.Laboratori de Fisiologia Vegetal, Facultat de FarmaciaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations