Biologia Plantarum

, Volume 55, Issue 2, pp 323–326 | Cite as

Genetic variation within and among small isolated populations of Santalum album

  • K. G. Srikanta Dani
  • P. Ravikumar
  • R. Pravin Kumar
  • A. KushEmail author
Brief Communication


A combination of directed amplification of minisatellite DNA (DAMD) and random amplification of polymorphic DNA (RAPD) primes were used to assess the genetic variation within and between three isolated populations of Indian sandalwood (Santalum album). Eleven primers used in this study amplified 65.99 % polymorphic bands. Analysis of molecular variance revealed a high genetic variation among these populations (ϕST = 0.549). There are indications of clonality within the existing Indian sandalwood populations which can be attributed to habitat fragmentation, isolation and vegetative reproduction.

Additional key words

DAMD genetic diversity population fragmentation RAPD sandalwood 



analysis of molecular variance


directed amplification of minisatellite DNA


random amplification of polymorphic DNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. S.R. Bhat, NRCPB, New Delhi for his valuable comments on the manuscript. Authors thank Mr. K.S. Sanjith and Mr. Krishnappa for their help in field work. Financial assistance by Department of Biotechnology, Government of India (Grant number BT/PR6739/PBD/17/433/2005) is duly acknowledged.


  1. Aagaard, J.E.: RAPDs and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas-fir. — Heredity 81: 69–78, 1998.CrossRefGoogle Scholar
  2. Aguilar, R., Quesda, M., Ashworth, L., Herrerias-Diego, Y., Lobo, G.: Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. — Mol. Ecol. 17: 5177–5188, 2008.PubMedCrossRefGoogle Scholar
  3. Amiri, R., Mesbah, M., Moghaddam, M., Bihamta, M.R., Mohammadi, S.A., Norouzi, P.: A new RAPD marker for beet necrotic yellow vein virus resistance gene in Beta vulgaris. — Biol. Plant. 53: 112–119, 2009.CrossRefGoogle Scholar
  4. Bhattacharya, E., Ranade, S.A.: Molecular distinction amongst varieties of mulberry using RAPD and DAMD profiles. — BMC Plant Biol. 1: 3–5, 2001.PubMedCrossRefGoogle Scholar
  5. Bottin, L., Verhaegen, D., Tassin, J., Olivieri, I., Valliant, A., Bouvet, J.M.: Genetic diversity and population structure of an insular tree, Santalum austrocaledonicum in new caledonian archipelago. — Mol. Ecol. 14: 1979–1989, 2005.PubMedCrossRefGoogle Scholar
  6. Brand, J.E.: Genotypic variation in Santalum album. — Sandalwood Res. Newslett. 2: 2–4, 1994.Google Scholar
  7. Dice, L.R.: Measures of the amount of ecologic association between species. — Ecology 26: 297–302, 1945.CrossRefGoogle Scholar
  8. Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from fresh tissues. — Focus. 12: 13–15, 1995.Google Scholar
  9. Feria-Romero, I.A., Astudillo-de la Vega, H., Chavez-Soto, M.A., Rivera-Arce, E., López, M., Serrano, H., Lozoya, X. RAPD markers associated with quercetin accumulation in Psidium guajava. — Biol. Plant. 53: 125–128, 2009.CrossRefGoogle Scholar
  10. Frankham, R.: Do island populations have less genetic variation than mainland populations? — Heredity 78: 311–327, 1997.PubMedCrossRefGoogle Scholar
  11. Hochbaum, D.S., Pathria, A.: Path costs in evolutionary tree reconstruction. — J. Computat. Biol. 4: 163–176, 1997.CrossRefGoogle Scholar
  12. Lacerda, D.R., Acedo, M.D.P., Lemnos Filho, J.P., Lovato, M.B.: Genetic diversity and structure of natural populations of Plathymenia reticulate (Mimosoideae), a tropical tree from Brazilian cerrado. — Mol. Ecol. 9: 1843–1853, 2001.Google Scholar
  13. Lhuillier, E., Butaud, J.F., Bouvet, J.M.: Extensive clonality and strong differentiation in the insular pacific tree Santalum insulare: implications for its conservation. — Ann. Bot. 98:1061–1072, 2006.PubMedCrossRefGoogle Scholar
  14. Muir, K., Byrne, M., Barbour, E., Cox, M.C., Fox, J.E.D.: High levels of out-crossing in a family trial of Western Australian sandalwood (Santalum spicatum). — Silvae Genet. 56: 222–230, 2007.Google Scholar
  15. Nei, M., Li, W.H.: Mathematical model for studying genetic variation in terms of restriction endonucleases. — Proc. nat. Acad. Sci. USA 76: 5269–5273, 1979.PubMedCrossRefGoogle Scholar
  16. Rao, M.N., Ganeshaiah, K.N., Shaanker, U.: Assessing threats and mapping sandal resources to identify genetic hot spots for in situ conservation in peninsular India. — Conserv. Genet. 8: 925–935, 2007.CrossRefGoogle Scholar
  17. Shashidhara, G., Hema, M.V., Koshy, B., Farooki, A.A.: Assessment of genetic diversity and identification of core collection in sandalwood germplasm using RAPDs. — J. hort. Sci. Biotechol. 78: 528–536, 2003.Google Scholar
  18. Shetty, R.H.: Sandal, an exotic tree? — Indian Forest. 103: 359–367, 1977.Google Scholar
  19. Shrestha, M.K., Golan-Goldhrish, A., Ward, D.: Population genetic structure and conservation of isolated populations of Acacia raddiana in Negev desert. — Biol. Conserv. 108: 119–127, 2002.CrossRefGoogle Scholar
  20. Stockwell, C.A.: Contemporary evolution meets conservation biology. — Trends Ecol. Evol. 18: 94–101, 2003.CrossRefGoogle Scholar
  21. Tourmente, S., Lazreg, A., Lafleuriel, J., Tutois, S., Cuvillier, C., Espagnol, M.C., Picard, G.: Identification of new minisatellite loci in Arabidopsis thaliana. — J. exp. Bot. 49:21–25, 1998.CrossRefGoogle Scholar
  22. Zhou, J., Bebeli, P.J., Somers, D.J., Gustafson, J.P.: Directed amplification of minisatellite region DNA in VNTR core sequences in the genus Oryza. — Theor. appl. Genet. 95:942–949, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • K. G. Srikanta Dani
    • 1
  • P. Ravikumar
    • 1
  • R. Pravin Kumar
    • 1
  • A. Kush
    • 1
    Email author
  1. 1.Vittal Mallya Scientific Research FoundationBangaloreIndia

Personalised recommendations