Skip to main content
Log in

An apoplastic chitinase CpCHT1 isolated from the corolla of wintersweet exhibits both antifreeze and antifungal activities

  • Published:
Biologia Plantarum

Abstract

The shrub Chimonanthus praecox L. (wintersweet) which is native to Chinese montane forests produces its flowers in the midst of winter. This indicates that the floral organs of this species are adapted to growth and development under freezing temperatures. Here, we report the isolation and preliminary characterisation of a 33 kDa apoplastic antifreeze chitinase (CpCHT1) from the petals and its corresponding cDNA. The chitinase activity of CpCHT1 was confirmed by activity staining. Antifreeze activity was validated in terms of the formation of bipyramidal ice crystals and high thermal-hysteresis values. CpCHT1 was also found to affect the germination of fungal spores of four major plant pathogens. In addition, the gene and protein are expressed constitutively not only in flowers, but also in leaves, bark and root tissues. From these data we hypothesize that this protein is multifunctional and may protect wintersweet from freezing injury and provide nonspecific disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFPs:

antifreeze proteins

PDA:

potato dextrose agar

PR:

pathogenesis-related proteins

CLPs:

chitinase-like proteins

References

  • Antikainen, M., Griffith, M.: Antifreeze protein accumulation in freezing-tolerant cereals. — Physiol. Plant. 99: 423–432, 1997.

    Article  CAS  Google Scholar 

  • Atici, O., Nalbantoglu, B.: Antifreeze proteins in plants. — Phytochemistry 64: 1187–1196, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 1105–1112, 1976.

    Article  Google Scholar 

  • Bravo, L.A., Griffith, M.: Characterization of antifreeze activity in Antarctic plants. — J. exp. Bot. 56: 1189–1196, 2005.

    Article  CAS  PubMed  Google Scholar 

  • DeVries, A.L.: Antifreeze peptides and glycopeptides in cold-water fishes. — Annu. Rev. Plant Physiol. 45: 245–260, 1983.

    CAS  Google Scholar 

  • Duman, J.G., Olsen, T.M.: Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. — Cryobiology 30: 322–328, 1993.

    Article  Google Scholar 

  • Ewart, K.V., Lin, Q., Hew, C.L.: Structure, function and evolution of antifreeze proteins. — Cell. mol. Life Sci. 55: 271–283, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, M., Ewart, K.: Antifreeze proteins and their potential use in frozen foods. — Biotech. Adv. 13: 375–402, 1995.

    Article  CAS  Google Scholar 

  • Griffith, M., Antikainen, M.: Extracellular ice formation in freezing-tolerant plants. — Adv. Low Temp. Biol. 3: 107–139, 1996.

    Google Scholar 

  • Griffith, M., Yaish, M.W.F.: Antifreeze proteins in overwintering plants: a tale of two activities. — Trends Plant Sci. 9: 399–405, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Guerra-Guimaraes, L., Silva, M.C., Struck, C., Loureiro, A., Nicole, M., Rodrigues, C.J., Jr., Ricardo, C.P.P.: Chitinases of Coffea arabica genotypes resistant to orange rust Hemileia vastatrix. — Biol. Plant. 53: 702–706, 2009.

    Article  CAS  Google Scholar 

  • Hansen, T.N., Baust, J.G.: Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm, Tenebrio molitor. — Biochim. biophys. Acta 957: 217–221, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Harlow, E., Lane, D. (ed.): Antibodies: A laboratory manual. — Cold Spring Harbor Laboratory Press, Plainview — New York 1988.

    Google Scholar 

  • Hon, W.C., Griffith, M., Chong, P., Yang, D.S.C.: Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.). — Plant Physiol. 104: 971–980, 1994.

    CAS  PubMed  Google Scholar 

  • Kobashigawa, Y., Nishimiya, Y., Miura, K., Ohgiyab, S., Miura, A., Tsuda, S.: A part of ice nucleation protein exhibits the ice-binding ability. — FEBS Lett. 579: 1493–1497, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kreps, J.A., Wu, Y.J., Chang, H.S., Zhu, T., Wang, X., Harper, J.F.: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. — Plant Physiol. 130: 2129–2141, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 277: 680–685, 1970.

    Article  Google Scholar 

  • Moffat, B., Ewart, V., Eastman, A.: Cold comfort: plant antifreeze proteins. — Physiol. Plant. 126: 5–16, 2006.

    Article  Google Scholar 

  • Nakamura, T., Ishikawa, M., Nakatani, H., Oda, A.: Characterisation of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. — Plant Physiol. 147: 391–401, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa, Y., Saruta, M., Nakazono, K., Nishio, Z., Soma, M., Yoshida, T.: Characterization of transgenic rice plants over-expressing the stress-inducible β-glucanase gene Gns1. — Plant mol. Biol. 51: 143–152, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Patil, R.S., Ghormade, V., Deshpande, M.V.: Chitinolytic enzymes: an exploration. — Enzyme Microbiol. Tech. 26: 473–483, 2000.

    Article  CAS  Google Scholar 

  • Pihakaski-Maunsbach, K., Moffatt, B., Testillano, P., Risueno, M., Yeh, S.S., Griffith, M., Maunsbach, A.B.: Genes encoding chitinase-antifreeze proteins are regulated by cold and expressed by all cell types in winter rye shoots. — Physiol. Plant. 112: 359–371, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (ed.): Molecular Cloning: A Laboratory Manual. 2nd Ed. — Cold Spring Harbour Laboratory Press, Plainview — New York 1989.

    Google Scholar 

  • Sidebottom, C., Buckley, S., Pudney, P., Twigg, S., Jarman, C., Holt, C.: Heat-stable antifreeze protein from grass. — Nature. 406: 256, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Tronsmo, A., Harman, G.E.: Detection and quantification of N-acetyl-B-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. — Anal. Biochem. 208: 74–79, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Von Heijne, G.: A new method for predicting signal sequence cleavage sites. — Nucl. Acids Res. 14: 4683–4690, 1986.

    Article  Google Scholar 

  • Wang, H.L., Tao, J.J., He, L.G., Zhao, Y.J., Xu, M., Liu, D.C., Sun, Z.H.: cDBNA cloning and expression analysis of a Poncirus trifoliata DBF gene. — Biol. Plant. 53: 625–630, 2009.

    Article  CAS  Google Scholar 

  • Xin, Z., Browse, J.: Cold comfort farm: the acclimation of plants to freezing temperatures. — Plant Cell Environ. 23: 893–902, 2000.

    Article  Google Scholar 

  • Xiong, L., Schumaker, K.S., Zhu, J.K.: Cell signaling during cold, drought, and salt stress. — Plant Cell 14(Suppl.): S165–S183, 2002.

    CAS  PubMed  Google Scholar 

  • Xu, Y., Zhu, Q., Panbangred, W., Shirasu, K., Lamb, C.: Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). — Plant mol. Biol. 30: 387–401, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, S., Moffatt, B., Griffith, M., Xiong, F., Yang, D.S.C., Wiseman, S.B.: Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. — Plant Physiol. 124: 1251–1265, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.-Y., Liang, C., Wang, G.-P., Luo, Y., Wang, W.: The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. — Biol. Plant. 54: 83–88, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Y.-C. Xu (Nanjing Agricultural University) for providing the wintersweet seeds and Ms. L.-X. Zhou (Jilin University) for collecting the wintersweet corolla material. We also thank Mr. R. Homfray (University of Wolverhampton) for technical help and advice during the preparation of this manuscript. This work was partially supported by the National Natural Science Foundation of China (No.30871607), the 863 Program (2006BAD08A08), and the Applied Basic Research Programs of Jilin Sci. & Tech.Comm. (No. 20060544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Baldwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.H., Wei, Y., Liu, J.L. et al. An apoplastic chitinase CpCHT1 isolated from the corolla of wintersweet exhibits both antifreeze and antifungal activities. Biol Plant 55, 141–148 (2011). https://doi.org/10.1007/s10535-011-0019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0019-5

Additional key word

Navigation