Skip to main content
Log in

Strategies of cadmium and zinc resistance in willow by regulation of net accumulation

  • Published:
Biologia Plantarum

Abstract

This work was performed to find out if metal resistant clones of Salix viminalis L. are capable to achieve high resistance to the metals by regulating their net accumulation. Salix clones with low or high resistance in combination with low or high accumulation capacity of either Zn or Cd were cultivated from cuttings in nutrient solution. The investigation included leakage and uptake experiments using 65Zn or 109Cd and analysis of root cation exchange capacity (CEC). Some plants were pre-treated with unlabeled 0.5 μM Cd or 2.5 μM Zn 24 h prior to the experiments to induce possible tolerance mechanisms. To find out if the regulation was a metabolic process, experiments were also performed with 2,4-dinitrophenol (DNP). Clones with high resistance and low Cd accumulation had higher efflux of Cd compared to the other clones, in both untreated and Cd pre-treated plants. This indicates a constitutive property to lower Cd accumulation by high Cd leakage. Pre-treatment with 0.5 μM Cd diminished the Cd net uptake to a level near zero in all clones, likely to be due to decreased the Cd uptake. In contrast, resistant clones with high Cd accumulation had the highest root CEC, which may be used to bind up Cd in the free space. No clear regulation of Zn net uptake was found in Zn-resistant clones. Pre-treatment with Zn decreased the uptake of Zn into the free space in Zn-resistant clones. The resistant high-accumulating clones, however, showed the highest leakage of Zn in both untreated and pre-treated plants, a constitutive process not related to high accumulation. Neither the influx nor the efflux of Cd or Zn was affected by DNP indicating passive transport across the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CEC:

cation exchange capacity

DNP:

2,4-dinitrophenol

References

  • Baker, A.J.M.: Accumulators and excluders — strategies in the response of plants to heavy metals. — J. Plant Nutr. 3: 643–654, 1981.

    Article  CAS  Google Scholar 

  • Baker, A.J.M.: Terrestial higher plants which hyperaccumulate metalic elements — a review of their distribution, ecology and phytochemistry. — Biorecovery 1: 81–126, 1989.

    Google Scholar 

  • Baker, A.J.M., Grant, C.J., Martin, M.H., Shaw, S.C., Whitebrook, J.: Induction and loss of cadmium tolerance in Holcus lanatus L. and other grasses. — New Phytol. 102: 575–587, 1986.

    Article  CAS  Google Scholar 

  • Blamey, F.P.C., Robinson, N.J., Asher, C.J.: Interspecific differences in aluminium tolerance in relation to root cationexchange capacity. — Plant Soil 146: 77–82, 1992.

    Google Scholar 

  • Bowen, J.E.: Physiology of genotyping differences in zinc and copper uptake in rice and tomato. — Plant Soil 99: 115–125, 1987.

    Google Scholar 

  • Cataldo, D.A., Garland, T.R., Wildung, R.E.: Cadmium uptake kinetics in intact soyabean plants. — Plant Physiol. 73: 844–848, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson, D.T., Lüttge, U.: Inducible and repressible nutrient uptake systems. — Progress Bot. 51: 93–112, 1991.

    Google Scholar 

  • Crooke, W.M.: The measurement of the cation-exchange capacity of plant roots. — Plant Soil 21: 43–49, 1964.

    Google Scholar 

  • Cutler, J.M., Rains, D.W.: Characterisation of cadmium uptake by plant tissue. — Plant Physiol. 54: 67–71, 1974.

    Article  CAS  PubMed  Google Scholar 

  • Di Baccio, D., Minocci, A., Sebastiani, L.: leaf structural modifications in Populus × euramericana subjected to Zn excess. — Biol. Plant. 50: 502–508, 2010.

    Article  Google Scholar 

  • Durand, T.C., Hausman, J.F., Carpin, S., Alberic, P., Baillif, P., Label, P., Morabito, D.: Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba. — Biol. Plant. 50: 191–194, 2010.

    Article  Google Scholar 

  • Ernst, W.H.O., Verkleij, J.A.C., Schat, H.: Metal tolerance in plants. — Acta bot. neerl. 41: 229–248, 1992.

    CAS  Google Scholar 

  • Fry, S.C.: The Growing Plant Cell Wall: Chemical and Metabolic Analysis. — Longman Scientific & Technical, Essex 1988.

    Google Scholar 

  • Greger, M., Landberg, T.: Use of willow in phytoextraction. — Int. J. Phytoremed. 1: 115–123, 1999.

    Article  CAS  Google Scholar 

  • Greger, M., Landberg, T., Berg, B.: Salix with Different Properties to Accumulate Heavy Metals for Production of Biomass. — Akademitryck AB, Edsbruk 2001.

    Google Scholar 

  • Guillermo, E.S.M., Daniel, H.C.: Bidirectional Zn-fluxes and compartmentation in wheat seedling roots. — J. Plant Physiol. 132: 312–315, 1988.

    Google Scholar 

  • Gussarson, M., Jensén, P.: Effects of copper and cadmium on uptake and leakage of K+ in birch (Betula pendula) roots. — Tree Physiol. 11: 305–313, 1992.

    Google Scholar 

  • Hooda, P.S., Alloway, B.J.: Effects of time and temperature on the bioavailibility of Cd and Pb from sludge-amended soils. — J. Soil Sci. 44: 97–110, 1993.

    Article  CAS  Google Scholar 

  • Jensén, P., Kylin, A.: Effect of ionic strength and relative humidity on the efflux of K+ (86Rb) and Ca2+ (45Ca) from roots of intact seedlings of cucumber, oat and wheat. — Physiol. Plant. 50: 199–207, 1980.

    Article  Google Scholar 

  • Landberg, T., Greger, M.: Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land. — In: Aronsson, P., Perttu, K. (ed.): Willow Vegetation Filters for Municipal Wastewaters and Sludges — a Biological Purification System. Pp. 133–144. SLU Info/Repro, Uppsala 1994.

    Google Scholar 

  • Landberg, T., Greger, M.: Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. — Appl. Geochem. 11: 175–180, 1996.

    Article  CAS  Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants. — Academic Press, London 1995.

    Google Scholar 

  • Meharg, A.A.: The role of plasmalemma in metal tolerance in angiosperms. — Physiol. Plant. 88: 191–198, 1993.

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., Forestier, C.: Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. — Plant J. 32: 539–548, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Silver, S., Misra, T.K.: Plasmid-mediated heavy metal resistance. — Annu. Rev. Microbiol. 42: 717–743, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Strange, J., MacNair, M.R.: Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus Fisher ex DC. — New Phytol. 119: 383–388, 1991.

    Article  CAS  Google Scholar 

  • Wagatsuma, T., Akiba, R.: Low surface negativity of root protoplasts from aluminium-tolerant plant species. — Soil Sci. Plant Nutr. 35: 443–452, 1989.

    CAS  Google Scholar 

  • Wang, J., Evangelou, B.P., Nielsen, M.T.: Surface chemical properties of purified root cell walls from two tobacco genotypes exhibiting different tolerance to manganese toxicity. — Plant Physiol. 100: 496–501, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Wells, J.M., Brown, D.H., Beckett, R.P.: Kinetic analysis of Cd uptake in Cd-tolerant and intolerant populations of the moss Rhytidiadephus squarrosus (Hedw.) Warnst and the lichen Peltigera membrnacea (Ach.) Nyl. — New Phytol. 129: 477–486, 1995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Landberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landberg, T., Jensén, P. & Greger, M. Strategies of cadmium and zinc resistance in willow by regulation of net accumulation. Biol Plant 55, 133–140 (2011). https://doi.org/10.1007/s10535-011-0018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0018-6

Additional key words

Navigation