Skip to main content
Log in

The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum δ-aminolevulinic acid synthase in transgenic rice

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The δ-aminolevulinic acid synthase (ALA-S) is an enzyme which catalyzes the synthesis of δ-aminolevulinic acid (ALA). The Bradyrhizobium japonicum ALA-S coding sequence lacking plastidal transit sequence was introduced into the rice genome (C line). The transgenic lines, C4 and C5, were compared with the transgenic lines expressing TALA-S gene with plastidal transit sequence (P line) to investigate whether the plastidal sequence affects the targeting capacity of B. japonicum ALA-S gene and the ALA-synthesizing capacity in rice plants. The B. japonicum ALA-S mRNA was expressed efficiently in C lines and the protein was localized in the stroma of chloroplasts regardless of the transit sequence as in P lines. The resulting transgenic plants, C line, had similar levels of ALA-S activity, ALA, protoporphyrin IX and chlorophylls, compared to those of P lines. In response to irradiance of 350 μmol m−2 s−1, transgenic lines C4 and C5 displayed the characteristic phenotypes of photodynamic damage, i.e., decreases in photosynthetic parameter Fv/Fm, as in P5 and P14 lines, whereas wild type did not. These results indicate that the lack of the plastidal transit sequence influences neither chloroplast translocation of B. japonicum ALA-S nor ALA-synthesizing capacity in the transgenic rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

δ-aminolevulinic acid

ALA-S:

δ-aminolevulinic acid synthase without additional plastidal transit sequence

Proto IX:

protoporphyrin IX

TALA-S:

δ-aminolevulinic acid synthase with additional plastidal transit sequence

References

  • Alawady, A.E., Grimm, B.: Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. — Plant J. 41: 282–290, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Beale, S.I.: δ-Aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. — Annu. Rev. Plant Physiol. 29: 95–120, 1978.

    Article  CAS  Google Scholar 

  • Ha, S.B., Lee, D.E., Back, K.: Extracellular production of 5-aminolevulinic acid and affinity purification of Bradyrhizobium japonicum 5-aminolevulinic acid synthase in Escherichia coli. — Agr. Chem. Biotechnol. 45: 160–163, 2002.

    CAS  Google Scholar 

  • Hopf, F.R., Whitten, D.G.: Chemical transformations involving photoexcited porphyrins and metalloporphyrins. — In: Dolphin, D. (ed.): The Porphyrins. Vol. 2. Pp. 191–195. Academic Press, New York 1978.

    Google Scholar 

  • Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y., Konnai, M.: Promotive effects of 5-aminolevulinic acid on the yield of several crops. — Plant Growth Regul. 22: 109–114, 1997.

    Article  CAS  Google Scholar 

  • Hotta, Y., Watanabe, K.: Plant growth-regulating activities of 5- aminolevulinic acid. — Syokubutu-no-Kagaku-Tyousetu 34: 85–96, 1999.

    Google Scholar 

  • Jung, S., Back, K., Yang, K., Kuk, Y.I., Chon, S.-U.: Defence response produced during photodynamic damage in transgenic rice overexpressing 5-aminolevulinic acid synthase. — Photosynthetica 46: 3–9, 2008.

    Article  CAS  Google Scholar 

  • Jung, S., Yang, K., Lee, D.-E., Back, K.: Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. — Plant Sci. 167: 789–795, 2004.

    Article  CAS  Google Scholar 

  • Krause, G.H., Briantais, T.M., Vernotte, C.: Characterization of chlorophyll fluorescence spectroscopy at 77 K. I. ΔpH-dependent quenching. — Biochim. biophys. Acta: 723: 169–175, 1983.

    Article  CAS  Google Scholar 

  • Kruse, E., Grimm, B., Beator, J., Kloppstech, K.: Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. — Planta 202: 235–241, 1997.

    Article  CAS  Google Scholar 

  • Lee, H.J., Lee, S.B., Chung, J.S., Han, S.U., Han, O., Guh, J.O., Jeon, J.S., An, G., Back, K.: Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. — Plant Cell Physiol. 41: 743–749, 2000.

    CAS  PubMed  Google Scholar 

  • McClung, C.R., Somerville, J.E., Guerinot, M.L., Chelm, B.K.: Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. — Gene 54: 133–139, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Papenbrock, J., Mock, H.P., Kruse, E., Grimm, B.: Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. — Planta 208: 264–273, 1999.

    Article  CAS  Google Scholar 

  • Pomar, F., Barceló, A.R.: Are red leaves photosynthetically active? — Biol. Plant. 51: 799–800, 2007.

    Article  Google Scholar 

  • Rebeiz, C.A., Montazer-Zouhoor, A., Hopen, H.J., Wu, S.M.: Photodynamic herbicides: concept and phenomenology. — Enzyme Microbiol. Technol. 6: 390–401, 1984.

    Article  CAS  Google Scholar 

  • Roy, C.B., Vivekanandan, M.: Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo, and V. radiate. — Biol. Plant. 41: 211–215, 1998.

    Article  CAS  Google Scholar 

  • Sasaki, K., Marquez, F.J., Nishio, N., Nagai, S.: Promotive effect of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. — J. Ferment Bioeng. 79: 453–457, 1995.

    Article  Google Scholar 

  • Sasaki, K., Tanaka, T., Nagai, S.: Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. — In: Martin, A.M. (ed.): Bioconversion of Waste Materials to Industrial Products. Second Edition. Pp. 247–291. Blackie Academic and Professional, London 1998.

    Google Scholar 

  • Tanaka, R., Tanaka, A.: Tetrapyrrole biosynthesis in higher plants. — Annu. Rev. Plant Biol. 58: 321–346, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., Kuramochi, H.: 5-Aminolevulinic acid improves salt tolerance. — Regul. Plant Growth Dev. 36: 190–197, 2001.

    CAS  Google Scholar 

  • Tanaka, T., Takahashi, K., Hotta, T., Takeuchi, Y., Konnai, M.: Promotive effects of 5-aminolevulinic acid on yield of several crops. — In: Proceedings of the 19th Annual Meeting of Plant Growth Regulator Society of America. Pp. 237–241. Plant Growth Regulator Society of America, Washington 1992.

    Google Scholar 

  • Tripathy, B.C., Chakraborty, N.: 5-Aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. — Plant Physiol. 96: 761–767, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Urata, G., Granick, S.: Biosynthesis of α-aminoketones and the metabolism of aminoacetone. — J. biol. Chem. 238: 811–820, 1963.

    CAS  PubMed  Google Scholar 

  • Urban-Grimal, D., Volland, C., Garnier, T., Dehoux, P., Labbe-Bois, R.: The nucleotide sequence of the hem1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinic synthase in Saccharomyces cerevisae. — Eur. J. Biochem. 156: 511–519, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H., Takeuchi, Y.: Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. — Plant Growth. Regul. 32: 99–103, 2000.

    Article  CAS  Google Scholar 

  • Zavgorodnyaya, A., Papenbrock, J., Grimm, B.: Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. — Plant J. 12: 169–178, 1997.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2006-531-F00004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Back, K., Jung, S. The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum δ-aminolevulinic acid synthase in transgenic rice. Biol Plant 54, 279–284 (2010). https://doi.org/10.1007/s10535-010-0049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0049-4

Additional key words

Navigation