Skip to main content
Log in

Evaluation of zinc accumulation potential of Hydrilla verticillata

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Biofortification of foods with essential micronutrients and phytoremediation of the contaminated sites are the two sides of the same coin for metals like zinc. In the present study, Zn accumulation potential, growth and antioxidant status of Hydrilla verticillata (L.f.) Royle plants were studied upon supplementation of Zn (0–5 000 µM) for 2 and 7 d. At 5000 µM Zn, plants accumulated about 7.60 and 18.07 mg(Zn) g−1(d.m.) after 2 and 7 d, respectively. Plants exposed to Zn concentrations up to 500 µM showed significantly increased contents of low molecular mass antioxidants and activities of antioxidant enzymes in comparison with controls. Only upon exposure of plants to 5 000 µM Zn, toxicity was observed after 7 d. Therefore, owing to their high Zn accumulation capacity, Hydrilla plants may be used both as a Zn source (via culturing in ca. 100 µM Zn supplemented nutrient medium) or as a phytoremediator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APX:

ascorbate peroxidase

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

GPX:

guaiacol peroxidase

MDA:

malondialdehyde

NP-SH:

non-protein thiols

SOD:

superoxide dismutase

References

  • Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 680. Verlag Chemie — Academic Press, New York 1974.

    Google Scholar 

  • Ali, G., Srivastava, P.S., Iqbal, M.: Influence of cadmium and zinc on growth and photosynthesis of Bacopa monniera cultivated in vitro. — Biol. Plant. 43: 599–601, 2000.

    Article  CAS  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts: polyphenoloxidases in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Brown, S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M.: Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. — Soil Sci. Soc. Amer. J. 59: 125–133, 1995.

    Article  CAS  Google Scholar 

  • Cakmak, I.: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. — New Phytol. 146: 185–205, 2000.

    Article  CAS  Google Scholar 

  • Chaney, R.L.: Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains. — In: Bar-Yosef, B., Barrow, N.J., Goldshmid, J. (ed.): Inorganic Contaminants in the Vadose Zone. Pp. 140–158. Springer-Verlag, Berlin 1989.

    Google Scholar 

  • Duxbury, A.C., Yentsch, C.S.: Plankton pigment monograph. — J. Mar. Res. 15: 92–101, 1956.

    CAS  Google Scholar 

  • Ellman, G.L.: Tissue sulphydryl groups. — Arch. Biochem. Biophys. 82: 70–77, 1959.

    Article  CAS  PubMed  Google Scholar 

  • Gaitonde, M.K.: Spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. — Biochem. J. 104: 627–633, 1967.

    CAS  PubMed  Google Scholar 

  • Gatti, E.: Micropropagation of Ailanthus altissima and in vitro heavy metal tolerance. — Biol. Plant. 52: 146–148, 2008.

    Article  CAS  Google Scholar 

  • Gomez, K.A., Gomez, A.A. (ed.): Statistical Procedures for Agricultural Research. — John Wiley, New York 1984.

    Google Scholar 

  • Guerinot, M.L., Salt, D.E.: Fortified foods and phytoremediation. Two sides of the same coin. — Plant Physiol. 125: 164–167, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, M., Tripathi, R.D., Rai, U.N., Chandra, P.: Role of glutathione and phytochelatin in Hydrilla verticillata (L.f.) Royle and Vallisneria spiralis L. under mercury stress. — Chemosphere 37: 785–800, 1998.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hemeda, H.M., Klein, B.P.: Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. — J. Food Sci. 55: 184–185, 191, 1990.

    Article  CAS  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. — Calif. Agr. Exp. Sta. Circular 347: 1–32, 1950.

    Google Scholar 

  • House, W.A., Van Campen, D.R., Welch, R.M.: Influence of dietary sulfur-containing amino acids on the bioavailability to rats of zinc in corn kernels. — Nutr. Res. 16: 225–235, 1996.

    Article  CAS  Google Scholar 

  • Jin, X.F., Yang, X.E., Islam, E., Liu, D., Mahmood, Q., Li, H., Li, J.: Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. — Plant Physiol. Biochem. 46: 997–1006, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Kobae, Y., Uemura, T., Sato, M.H., Ohnishi, M., Mimura, T., Nakagawa, T., Maeshima, M.: Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. — Plant Cell Physiol. 45: 1749–1758, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O.H., Rosenberg, N.J., Farr, A.L., Randall, R.J.: Protein measurement with folin phenol reagent. — J. biol. Chem. 193: 265–275, 1951.

    CAS  PubMed  Google Scholar 

  • Marschner, H.: Mineral Nutrition in Higher Plants. — Academic press, London 1995.

    Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Omar, H.H.: Adsorption of zinc ions by Scenedesmus obliquus and S. quadricauda and its effect on growth and metabolism. — Biol. Plant. 45: 262–266, 2002.

    Article  Google Scholar 

  • Palmgren, M.G., Clemens, S., Williams, L.E., Kramer, U., Borg, S., Schjorring, J.K., Sanders, D.: Zinc biofortification of cereals: problems and solutions. — Trends Plant Sci. 13: 464–473, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, K.V.S.K., Paradha Saradhi, P., Sharmila, P.: Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. — Environ. exp. Bot. 42: 1–10, 1999.

    Article  CAS  Google Scholar 

  • Sarret, G., Saumitou-Laprade, P., Bert, V., Proux, O., Hazemann, J.-L., Traverse, A., Marcus, M.A., Manceau, A.: Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. — Plant Physiol. 130: 1815–1826, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, S., Trivedi, P.K., Tandon, P.K.: Phytochelatins and antioxidant systems respond differentially during arsenate and arsenite stress in Hydrilla verticillata (L.f.) Royle. — Environ. Sci. Technol. 41: 2930–2936, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, S., Gupta, D.K.: Copper induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. — Aquat. Toxicol. 80: 405–415, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Stoyanova, Z., Doncheva, S.: The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. — Braz. J. Plant Physiol. 14: 111–116, 2002.

    Article  CAS  Google Scholar 

  • Sun, Q., Ye, Z.H., Wang, X.R., Wong, M.H.: Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. — Phytochemistry 66: 2549–2556, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, R.D., Rai, U.N., Vajpayee, P., Ali, M.B., Khan, E., Gupta, D.K., Mishra, S., Shukla, M.K., Singh, S.N.: Biochemical responses of Potamogeton pectinatus L. exposed to higher concentrations of zinc. — Bull. Environ. Contam. Toxicol. 71: 255–262, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji, N., Hirayanagi, N., Okada, M., Miyasaka, H., Hirata, K., Zenk, M.H., Miyamoto, K.: Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. — Biochem. Biophys. Res. Commun. 292: 653–659, 2002.

    Article  Google Scholar 

  • Umebese, C.E., Motajo, A.F.: Accumulation, tolerance and impact of aluminium, copper and zinc on growth and nitrate reductase activity of Ceratophyllum demersum (Hornwort). — J. environ. Biol. 29: 197–200, 2008.

    CAS  PubMed  Google Scholar 

  • Wang, H., Liu, R.L., Jin, J.Y.: Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. — Biol. Plant. 53: 191–194, 2009.

    Article  CAS  Google Scholar 

  • Yang, X.E., Long, X.X., Ni, W.Z., Fu, C.X.: Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. — Chin. Sci. Bull. 47: 1634–1637, 2002.

    Article  CAS  Google Scholar 

  • Zhao, F.-J., McGrath, S.P.: Biofortification and phytoremediation. — Curr. Opin. Plant Biol. 12: 373–380, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Srivastava.

Additional information

Acknowledgements: Authors are thankful to Director, National Botanical Research Institute, Lucknow for the facilities provided. Financial support by Network Project is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S., Mishra, S., Dwivedi, S. et al. Evaluation of zinc accumulation potential of Hydrilla verticillata . Biol Plant 53, 789–792 (2009). https://doi.org/10.1007/s10535-009-0145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0145-5

Additional key words

Navigation