Skip to main content
Log in

Low concentration of exogenous abscisic acid increases lead tolerance in rice seedlings

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The effects of exogenous abscisic acid (ABA) on lead tolerance in rice (Oryza sativa L.) seedlings were investigated. Pre-treatment with 0.1 g m3 ABA for 2 d restricted amount of Pb translocated from roots to shoots, decreased malondialdehyde and H2O2 contents in leaves, and alleviated Pb-induced decrease in plant growth and leaf chlorophyll content. Further, ABA pre-treatment adjusted leaf antioxidative enzyme activities (increased ascorbate peroxidase and catalase activities while decreased superoxide dismutase activity) and so alleviated oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ABA:

abscisic acid

APX:

acorbate peroxidase

AsA:

ascorbic acid

CAT:

catalase

DTT:

dithiothreitol

EDTA:

ethylenediamine tetraacetic acid

GSH:

glutathione

MDA:

malondialdehyde

PBS:

phosphate buffer solution

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Poly-phenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed  Google Scholar 

  • Body, P.E., Dolan, P.R., Mulccahy, D.E.: Environmental lead: a review. — Crit. Rev. Environ. Control 20: 299–310, 1991.

    Article  CAS  Google Scholar 

  • Burzynski, M.: The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. — Acta Physiol. Plant. 9: 229–238, 1987.

    CAS  Google Scholar 

  • Cakmak, I., Horst, W.J.: Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max L.). — Physiol. Plant. 83: 463–468, 1991.

    Article  CAS  Google Scholar 

  • Chaitanya, K.S.K., Naithani, S.C.: Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. f. — New Phytol. 126: 623–627, 1994.

    Article  CAS  Google Scholar 

  • Creelman, R.A.: Abscisic acid physiology and biosynthesis in higher plants. — Physiol. Plant. 75: 131–136, 1989.

    Article  CAS  Google Scholar 

  • Drazkiewicz, M.: Chlorophyll occurrence, functions, mechanism of action, effects of internal and external factors. — Photosynthetica 30: 321–331, 1994.

    CAS  Google Scholar 

  • Eun, S., Young, H.S., Lee Y.: Lead disturbs microtubule organization in the root meristem of Zea mays. — Physiol. Plant. 110: 357–365, 2000.

    Article  CAS  Google Scholar 

  • Finkelstein, R.R., Wang, M.L., Lynch T.J., Rao, S., Goodman, H.M.: The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. — Plant Cell 10:1043–1054, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Fediuc, E., Lips, S.H., Erdei, L.: O-Acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. — J. Plant Physiol. 162: 865–872, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Geebelen, W., Van Gronsveld, J., Adriano, D.C., Van Poucke, L.C., Clijsters, H.: Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. — Physiol. Plant. 115: 377–384, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J.L.: Cellular mechanisms for heavy metal detoxification and tolerance. — J. exp. Bot. 53: 1–11, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M.A, Asada, K.: Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. — Plant Cell Physiol. 25: 85–92, 1984.

    CAS  Google Scholar 

  • Hsu, Y.T., Kao, C.H.: Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. — Plant Cell Environ. 26:867–874, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, Y.T., Kao, C.H.: Cadmium toxicity is reduced by nitric oxide in rice leaves. — Plant Growth Regul. 42: 227–238, 2004.

    Article  CAS  Google Scholar 

  • Jana, S., Choudhuri, M.A.: Glycolate metabolism of three submerged aquatic angiosperms during aging. — Aquat. Bot. 12: 345–354, 1981.

    Article  Google Scholar 

  • Kunsch, C., Medford, R.M.: Oxidative stress as a regulator of gene expression in the vasculature. — Research 85: 753–766, 1999.

    CAS  Google Scholar 

  • Lee, K.C., Cunningham B.A., Paulsen, G.M., Liang, J.M., Moore, R.B.: Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. — Physiol. Plant. 36:4–6, 1976.

    Article  CAS  Google Scholar 

  • Lozano, R., Azcon, R., Palma, J.M.: SOD and drought stress in Lactua sativa. — New Phytol. 136: 329–331, 1996.

    Google Scholar 

  • Mandhania, S., Madan, S., Sawhney, V.: Antioxidant defense mechanism under salt stress in wheat seedlings. — Biol. Plant. 50: 227–231, 2006.

    Article  CAS  Google Scholar 

  • Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.: Salicylic acid alleviates the cadmium toxicity in barley seedlings. — Plant Physiol. 132: 272–281, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, M.N.V.: Cadmium toxicity and tolerance in vascular plants. — Environ. exp. Bot. 35: 525–545, 1995.

    Article  CAS  Google Scholar 

  • Ramos, I., Esteban, E., Lucena, J.J., Garate, A.: Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. — Plant Sci. 162: 761–767, 2002.

    Article  CAS  Google Scholar 

  • Rensing, C., Sun, Y., Mitra, B., Rosen, B.P.: Pb(II)-translocating P-type ATPases. — J. biol. Chem. 273: 32614–32617, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I.: Mechanisms of cadmium mobility and accumulation in Indian mustard. — Plant Physiol. 109: 1427–1433, 1995.

    CAS  PubMed  Google Scholar 

  • Salt, D.E., Smith, R.D., Raskin, I.: Phytoremediation. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49:643–668, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Dubey, R.S.: Lead toxicity in plants. — Braz. J. Plant Physiol. 17: 35–52, 2005.

    Article  CAS  Google Scholar 

  • Sharp, R.E., LeNoble, M.E., Else, M.A., Thorne, E.T., Gherardi, F.: Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: Evidence for an interaction with ethylene. — J. exp. Bot. 51: 1575–1584, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Verma, S., Dubey, R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. — Plant Sci. 164: 645–655, 2003.

    Article  CAS  Google Scholar 

  • Wierzbicka, M.H., Przedpełska, E., Ruzik, R., Ouerdane, L., Połeć Pawlak, K., Jarosz, M., Szpunar, J., Szakiel, A.: Comparison of the toxicity and distribution of cadmium and lead in plant cells. — Protoplasma. 231: 99–111, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, J., An, L., Lu, H., Zhu, C.: Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pection and hemicellulose contents in root cell wall. — Planta 230:755–765, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, L., Ishitani, M., Zhu, J.K.: Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. — Plant Physiol. 119: 205–212, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, L., Zhu, J.K.: Regulation of abscisic acid biosynthesis. — Plant Physiol. 133: 29–36, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C.M., Zhao, B., Wang, X.D., Wang, Y.C.: Lanthanum relieves salinity-induced oxidative stress in Saussurea involucrate. — Biol. Plant. 51: 567–570, 2007.

    Article  CAS  Google Scholar 

  • Zaninotto, F., La Camera, S., Polverari, A., Delledonne, M.: Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. — Plant Physiol. 141: 379–383, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart, J.A.D., Creelman, R.A.: Metabolism and physiology of abscisic acid. — Annu. Rev. Plant Physiol. Plant mol. Biol. 39:439–473, 1988.

    Article  CAS  Google Scholar 

  • Zhou, B., Guo, Z.: Calcium is involved in the abscisic acid-induced ascorbate peroxidase, superoxide dismutase and chilling resistance in Stylosanthes guianensis. — Biol. Plant. 53: 63–68, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zhu.

Additional information

Acknowledgements: The first two authors contributed equally to this paper, the research is supported by the Project of National Key Basic Research and Development (2007CB109305) and National Nature Science Foundation (No. 30671255) of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Xiong, J., Li, L.P. et al. Low concentration of exogenous abscisic acid increases lead tolerance in rice seedlings. Biol Plant 53, 728–732 (2009). https://doi.org/10.1007/s10535-009-0132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0132-x

Additional key words

Navigation