Skip to main content

Advertisement

Log in

Impairment in reproductive development is a major factor limiting yield of black gram under zinc deficiency

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Black gram [Vigna mungo (L.) Hepper] cv. IPU 94 plants grown in sand culture with deficient zinc (0.1 µM Zn) nutrition and those deprived of normal (1 µM) Zn supply at the initiation of flowering, showed decrease in dry matter production and especially seed yield. These plants showed a decrease in the size of anthers and stigmatic heads, pollen producing capacity of the anthers and stigmatic exudations. Zn deficiency caused structural alterations in exine and retarded germination of pollen grains and tube growth. The pollen extracts and stigmatic exudates of the Zn-deficient plants showed increase in activity of acid phosphatase isoforms and inhibition of esterase isoforms. Zn deficiency led to decrease in number of pods, seeds per pod and seed mass, altered seed coat topography and reduced seeds germinability. Low seed yield under Zn deficiency is attributed to a role of Zn in pollen function, as also in pollen-pistil interaction conducive to fertilization and development of seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

PPC:

pollen producing capacity

SEM:

scanning electron microscopy

References

  • Alexander, M.P.: A method for staining pollen tubes in pistils. — Stain Technol. 62: 107–112, 1987.

    CAS  PubMed  Google Scholar 

  • Bradford, M M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, R.F.: The effect of zinc fertilizer on take-all and the grain yield of wheat on zinc deficient soils of the Esperance region, Western Australia. — Fert. Res. 31: 215–219, 1992.

    Article  CAS  Google Scholar 

  • Brewbaker, J.L., Kwack, B.H.: The essential role of calcium ion in pollen germination and pollen tube growth. — Amer. J. Bot. 50: 859–865, 1963.

    Article  CAS  Google Scholar 

  • Brewbaker, J.L., Upadhaya, M.D., Makinen, Y., MacDonald, T.: Isoenzyme polymorphism in flowering plants. III. Gel electrophoretic methods and applications. — Physiol. Plant. 21: 930–940, 1968.

    Article  CAS  Google Scholar 

  • Brive, A., Sengupta, A.K., Beuchlie, D., Larsson, J., Kennison, J.A., Rasmuson-Lestander, A., Muller, J.: Su(z)12, a novel Drosophila polycomb group gene that is conserved in vertebrates and plants. — Development 128: 3371–3379, 2001.

    Google Scholar 

  • Cakmak, I.: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. — New Phytol. 146: 185–205, 2000.

    Article  CAS  Google Scholar 

  • Dafni, A., Maues, M.M.: A rapid and simple procedure to determine stigma receptivity. — Sex. Plant Reprod. 11: 177–180, 1998.

    Article  Google Scholar 

  • Dickenson, H.G., Elleman, C.J.: Pollen hydrodynamics and self-incompatibility in Brassica oleracea. — In: Stephenson, A.G., Kas, T.-H. (ed.): Pollen-Pistil Interactions and Pollen Tube Growth. Pp. 45–61. American Society of Plant Physiologists, Rockville 1994.

    Google Scholar 

  • Edlund, A.F., Swanson, R., Preuss, D.: Pollen and stigma structure and function: the role of diversity in pollination. — Plant Cell 16(Suppl): S84–S97, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Erdtman, G.: Pollen Morphology and Plant Taxonomy of Angiosperms: An Introduction to Palynology. — E.J. Brill, Leiden 1986.

  • Franklin-Tong, V.E.: Signaling and the modulation of pollen tube growth. — Plant Cell 11: 727–738, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M.A., Gagliano, W.B.: Maternal control of embryogenesis by MEDEA, a Polycomb-group gene in Arabidopsis. — Science 280: 446–450, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison, Y.: Control gates and micro-ecology: the pollen-stigma interaction in perspective. — Ann. Bot. 85: 5–13, 2000.

    Article  Google Scholar 

  • Hiscock, S.J.: Pollen-stigma interactions. — In: Goodman, R.M. (ed.): Encyclopedia of Crop Science. Pp. 1035–1037. Marcel Decker, New York 2004.

    Google Scholar 

  • Hiscock, S.J., Bown, D., Gurr, S.J., Dickinson, H.G.: Serine esterases are required for pollen tube penetration of the stigma in Brassica. — Sex. Plant Reprod. 15: 65–74, 2002.

    Article  CAS  Google Scholar 

  • Hiscock, S.J., Dewey, F.M., Coleman, J.O.D., Dickinson, H.G.: Identification and localization of an active cutinase in the pollen of Brassica napus L. — Planta 193: 377–384, 1994.

    Article  CAS  Google Scholar 

  • Kobayashi, A., Sakamoto, A., Kubo, K., Rybka, Z., Kanno, Y., Takatsuji, H.: Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. — Plant J. 13: 571–576, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P.-P., Koizuba, N., Martin, R.C., Nonogaki, H.: The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. — Plant J. 44: 960–971, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, N., Gupta, M., Sharma, C.P.: SEM studies on Zn deficient pollen and stigma of Vicia faba Linn. — Phytomorphology 45: 169–173, 1995.

    Google Scholar 

  • Pandey, N. Gupta, M., Sharma, C.P.: Zinc deficiency affects pollen structure and viability in green gram (V. radiata L. cv. T-44). — Geophytology 28: 31–34, 2000.

    Google Scholar 

  • Pandey, N., Pathak, G.C., Sharma, C.P.: Zinc is critically required for pollen function and fertilization in lentil. — J. Trace Elements Med. Biol. 20: 89–96, 2006.

    Article  CAS  Google Scholar 

  • Pandey, N., Sharma, C.P.: Safflower in response to varying levels of zinc supply. — J. indian bot. Soc. 77: 31–34, 1998.

    Google Scholar 

  • Radłowski, M., Kalinowski, A., Adamczyk, J., Królikowski, Z., Bartkowiak, S.: Proteolytic activity in the maize pollen wall. — Physiol. Plant. 98: 172–178, 1996.

    Article  Google Scholar 

  • Roggen, H.P.J.R., Stanley, R.G.: Cell-wall-hydrolyzing enzymes in wall formation as measured by pollen tube extension. — Planta 84: 295–303, 1969.

    Article  CAS  Google Scholar 

  • Sharma, C.P.: Deficiency Symptoms and Critical Concentration of Micronutrients in Crop Plants. — Lucknow University Centre, Lucknow 1996.

    Google Scholar 

  • Sharma, C.P. Plant Micronutrients. — Science Publishers, Enfield 2006.

    Google Scholar 

  • Sharma, P.N., Chatterjee, C., Sharma, C.P., Agarwala, S.C.: Zinc deficiency and anther development in maize. — Plant Cell Physiol. 28: 11–18, 1987.

    CAS  Google Scholar 

  • Shi, G.R., Cai, Q.S.: Photosynthetic and anatomical responses of peanut leaves to zinc stress. — Biol. Plant. 53: 391–394, 2009.

    Article  CAS  Google Scholar 

  • Shivanna, K.R., Rangaswamy, N.S.: Pollen Biology: A Laboratory Manual. — Narosa Publishing House, New Delhi 1992.

    Google Scholar 

  • Takahashi, M., Terada, Y., Nakai, I., Nakanishi, H., Yoshimura, E., Mori, S., Nishizawa, N.K.: Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. — Plant Cell 15: 1263–1280, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Takatsuji, H. Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. — Plant mol. Biol. 39: 1073–1078, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Takkar, P.N., Walker C.: The distribution and correction of zinc deficiency. — In: Robson, A.D. (ed.): Zinc in Soils and Plants. Pp. 151–166. Kluwer Academic Publishers, Dordrecht 1993.

    Google Scholar 

  • Taylor, L.P., Hepler, P.K.: Pollen germination and tube growth. — Annu. Rev. Plant Physiol. Plant. mol. Biol. 48: 461–491, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Weber, H., Borisjuk, L., Wobus, U.: Molecular physiology of legume seed development. — Annu. Rev. Plant Biol. 56: 253–257, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Zinkl, G.M., Zwiebel, B.I., Grier, D.G., Preuss, D.: Pollenstigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. — Development 128: 5431–5440, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pandey.

Additional information

Ackowledgement: We are grateful to the Council of Scientific and Industrial Research, New Delhi, for financial assistance under Project No. 38/0954/99/EMR-II and Director, National Botanical Research Institute, Lucknow for SEM and AAS facility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, N., Pathak, G.C. & Sharma, C.P. Impairment in reproductive development is a major factor limiting yield of black gram under zinc deficiency. Biol Plant 53, 723–727 (2009). https://doi.org/10.1007/s10535-009-0131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0131-y

Additional key words

Navigation