Skip to main content
Log in

Antioxidant protection during ageing and senescence in transgenic tobacco with enhanced activity of cytokinin oxidase/dehydrogenase

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

We studied changes in physiological parameters of whole leaves and in antioxidant protection of chloroplasts during ageing and senescence of tobacco (Nicotiana tabacum L. cv. Samsun NN) leaves with enhanced cytokinin oxidase/dehydrogenase activity (CKX) or without it (WT). Old leaves of CKX plants maintained higher pigment content and photosystem 2 activity compared to WT leaves of the same age. Chloroplasts of old CKX plants showed better antioxidant capacity represented by higher superoxide dismutase, dehydroascorbate reductase and glutathione reductase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbate

BSA:

bovine serum albumin

Car:

carotenoids

Chl:

chlorophyll

CKX:

transgenic tobacco with enhanced cytokinin oxidase/dehydrogenase activity

CKs:

cytokinins

DHAR:

dehydroascorbate reductase

DTNB:

5,5-dithiobis-2-nitrobenzoic acid

DTT:

dithiothreitol

FM :

maximum fluorescence

FV :

variable fluorescence

GR:

glutathione reductase

MDHAR:

monodehydroascorbate reductase

PS:

photosystem

ROS:

reactive oxygen species

SOD:

superoxide dismutase

WT:

wild type plants

XTT:

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt

References

  • Bowler, C., Van Camp, W., Van Montagu, M., Inzé, D.: Superoxide dismutases in plants. — Crit. Rev. Plant Sci. 13: 199–218, 1994.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of micro quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston, V.: The molecular biology of leaf senescence. — J. exp. Bot. 48: 181–199, 1997.

    Article  Google Scholar 

  • Čaňová, I., Ďurkovič, J., Hladká, D.: Stomatal and chlorophyll fluorescence characteristics in European beech cultivars during leaf development. — Biol. Plant. 52: 577–581, 2008.

    Article  Google Scholar 

  • Del Río, L.A., Pastori, G.M., Palma, J.M., Sevilla, F., Corpus, F.J., Jimenéz, A., López-Huertas, E., Hernandéz, J.A.: The activated oxygen role of peroxisomes in senescence. — Plant Physiol. 116: 1195–1200, 1998.

    Article  PubMed  Google Scholar 

  • Demming, B., Björkman, O.: Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. — Planta 171: 171–184, 1987.

    Article  Google Scholar 

  • Dertinger, U., Schaz, U., Schulze, E.-D.: Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. — Physiol. Plant. 119: 19–29, 2003.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. — Planta, 133: 21–25, 1976.

    Article  Google Scholar 

  • Gan, S., Amasino, R.M.: Inhibition of leaf senescence by autoregulated production of cytokinin. — Science 270: 1986–1988, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Genty, B., Briantais, J.M., Bake, N.R., Neil, R.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 990: 87–92, 1989.

    CAS  Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C.: Oxidative stress and antioxidant protection: some special cases. — In: Halliwell, B., Gutteridge, J.M.C. (ed.): Free Radicals in Biology and Medicine. Pp. 485–543. Oxford University Press, Oxford 1989.

    Google Scholar 

  • Hossain, M.A., Asada, K.: Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. — Plant Cell Physiol. 25: 85–92, 1984.

    CAS  Google Scholar 

  • Hossain, M.A., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 25: 385–395, 1984.

    CAS  Google Scholar 

  • Jimenéz, A., Hernandez, J., Pastori, G., Del Río, L., Sevilla, F.: Role of the ascorbate-glutathione cycle in mitochondria and peroxisomes in the senescence of pea leaves. — Plant Physiol. 118: 1327–1335, 1998.

    Article  PubMed  Google Scholar 

  • Kunce, C.M., Trelease, R.N., Turley, R.B.: Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase. — Biochem. J. 251: 147–155, 1988.

    CAS  PubMed  Google Scholar 

  • Mok, D.W., Mok, M.C.: Cytokinin metabolism and action. — Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 89–118, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Mok, M.C.: Cytokinins and plant development: An overview. — In: Mok, D.W.S. Mok, M.C. (ed.): Cytokinins: Chemistry, Activity, and Function. Pp. 155–166. CRC Press, Bocca Raton 1994.

    Google Scholar 

  • Mýtinová, Z., Haisel, D., Wilhelmová, N.: Photosynthesis and protective mechanism during ageing in transgenic tobacco leaves with over-expressed cytokinin oxidase/dehydrogenase and thus lowered cytokinin content. — Photosynthetica 44: 599–605, 2006.

    Article  Google Scholar 

  • Mýtinová, Z., Haisel, D., Motyka, V., Gaudinová, A., Wilhelmová, N.: Effect of various abiotic stresses on the activity of antioxidative enzymes and phytohormone levels in wild type and transgenic tobacco plants overexpressing Arabidopsis thaliana cytokinin oxidase/dehydrogenase gene. — Biol. Plant. 54, in press, 2010.

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Navabpour, S., Morris, K., Allen, R., Harrison, E., A-H-Mackerness, S., Buchanan-Wollaston, V.: Expression of senescence-enhanced genes in response to oxidative stress. — J. exp. Bot. 54: 2285–2292, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Neill, S., Desikan, R., Hancock, J.: Hydrogen peroxide signalling. — Curr. Opin. Plant Biol. 5: 388–395, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Noodén, L.D.: The phenomena of senescence and aging. — In: Noodén, L.D., Leopold, A.C. (ed.): Senescence and Aging in Plants. Pp. 1–50. Academic Press, San Diego 1988.

    Google Scholar 

  • Pastori, G.M., Del Río, L.A.: An activated oxygen-mediated role for peroxisomes in the mechanism of senescence of Pisum sativum L. leaves. — Planta 193: 385–391, 1994.

    Article  CAS  Google Scholar 

  • Pell, E.J., Dann, M.S.: Multiple stress-induced foliar senescence and implication for whole-plant longevity. — In: Mooney, H.A., Winter, W.E., Pell, E.J. (ed.): Response of Plants to Multiple Stresses. Pp. 189–204. Academic Press, New York 1991.

    Google Scholar 

  • Peñarrubia, L., Moreno, J.: Senescence in Plants and Crops. — In: Pessarakli, M (ed.): Handbook of Plant and Crop Physiology. Pp. 461–481. Marcel Dekker, New York 1995.

    Google Scholar 

  • Porra, R.J., Thompson, W.A., Kriedemann, P.E.: Determination of accurate extinction coefficient and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. — Biochim. biophys. Acta 975: 384–394, 1989.

    Article  CAS  Google Scholar 

  • Procházková, D., Haisel, D., Wilhelmová, N.: Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life-span. — Cell Biochem. Funct. 26: 582–590, 2008.

    Article  PubMed  Google Scholar 

  • Procházková, D., Wilhelmová, N.: Leaf senescence and antioxidants. — Biol. Plant. 51: 401–406, 2007a.

    Article  Google Scholar 

  • Procházková, D., Wilhelmová, N.: The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris L.) cotyledons. 1. The antioxidant enzyme activities. — Cell Biochem. Func. 25: 87–95, 2007b.

    Article  Google Scholar 

  • Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. — Photosythetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Scandalios, J.G.: Molecular genetics of superoxide dismutases in plants. — In: Scandalios, J.G. (ed.): Oxidative Stress and the Molecular Biology of Antioxidant Defense. Pp. 527–568. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1997.

    Google Scholar 

  • Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). — Anal. Biochem. 175: 408–413, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Šindelářová, M., Šindelář, L., Burketová, L.: Correlation between activity of ribonucleases and potato virus Y biosynthesis in tobacco plants. — Physiol. mol. Plant Pathol. 57: 191–199, 2000.

    Article  Google Scholar 

  • Ukeda, H., Maeda, S., Ishii, T., Sawamura, M.: Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3*-{1-[(phenylamino)-carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. — Anal. Biochem. 251: 206–209, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence and nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Vranová, E., Inzé, D., Van Breusegem, F.: Signal transduction during oxidative stress. — J. exp. Bot. 53: 1227–1236, 2002.

    Article  PubMed  Google Scholar 

  • Walker, D.A., Cerovic, Z.G., Robinson, S.P.: Isolation of intact chloroplasts: general principles and criteria of integrity. — Metod. Enzymol. 148: 145–157, 1987.

    Article  CAS  Google Scholar 

  • Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., Schmülling, T.: Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite function of cytokinins in the regulation of shoot and root meristem activity. — Plant Cell 15: 2532–2550, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Werner, T., Motyka, V., Strnad, M., Schmülling, T.: Regulation of plant growth by cytokinin. — Proc. nat. Acad. Sci. USA 98: 10487–10492, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmová, N., Procházková, D., Šindelářová, M., Šindelář, L.: Photosynthesis in leaves of Nicotiana tabacum L. infected with tobacco mosaic virus. — Photosynthetica 43:597–602, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Procházková.

Additional information

Acknowledgements: This work was supported by the Grant Agency of the Czech Republic, grant No. 522/05/P558. The authors are highly indebted Prof. Schmülling and Dr. Werner (Freie Universität Berlin, Germany) for providing the plant seeds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procházková, D., Wilhelmová, N. Antioxidant protection during ageing and senescence in transgenic tobacco with enhanced activity of cytokinin oxidase/dehydrogenase. Biol Plant 53, 691–696 (2009). https://doi.org/10.1007/s10535-009-0124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0124-x

Additional key words

Navigation