Skip to main content
Log in

Effects of ozone on wild type and transgenic tobacco

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Tocopherol cyclase (TC, encoded by gene VTE1) catalyzes the penultimate step of tocopherol synthesis. In this study we used wild type and transgenic tobacco plants overexpressing VTE1 from Arabidopsis to examine the role of tocopherol in ozone sensitivity. Wild type plants responded to an 4-h exposure to 300 nmol mol−1 ozone by severe leaf necrosis while the transgenic lines exhibited limited injury. Compared with the wild type, VTE1-overexpressing plants had lower increase in hydrogen peroxide, malondialdehyde contents and ion leakage, and lower decrease of net photosynthetic rate 48 h following the ozone exposure. Transgenic plants also better maintained the structural integrity of the photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ci :

intercellular CO2 concentration

E:

transpiration rate

gs :

stomatal conductance to water vapor

MDA:

malondialdehyde

OTC:

open-top chamber

PAR:

photosynthetically active radiation

PNmax :

light-saturated net photosynthetic rate

PPFD:

photosynthetic photon flux density

ROS:

reactive oxygen species

TC:

tocopherol cyclase

References

  • Abbasi, A.R., Hajirezaei, M., Hofius, D., Sonnewald, U., Voll, L.M.: Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. — Plant Physiol. 143: 1720–1738, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Alscher, R.G., Erturk, N., Heath, L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. — J. exp. Bot. 53: 1331–1341, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Asada, K.: The water-water cycle as alternative photon and electron sinks. — Phil. Trans. roy. Soc. London B 355: 1419–1431. 2000.

    Article  CAS  PubMed  Google Scholar 

  • Bergmüller, E., Porfirova, S., Dörmann, P.: Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. — Plant mol. Biol. 52: 1181–1190, 2003.

    Article  PubMed  Google Scholar 

  • Bhargava, P., Atri, N., Srivastava, A.K., Rai, L.C.: Cadmium mitigates ultraviolet-B stress in Anabaena doliolum: enzymatic and non-enzymatic antioxidants. — Biol. Plant. 51: 546–550, 2007.

    Article  CAS  Google Scholar 

  • Chen, S., Li, H., Liu, G.: Progress of vitamin E metabolic engineering in plants. — Transgenic Res. 15: 655–665, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Gallie, D.R.: Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. — Plant Physiol. 138: 1673–1689, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Z., Sattler, S., Maeda, H., Sakuragi, Y., Bryant, D.A., Della Penna, D.: Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in Cyanobacteria and photosynthetic eukaryotes. — Plant Cell 15: 2343–2356, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., Lee, J., Ye, L., Exler, J., Eitenmiller, R.R.: Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. — J. Food Comp. Anal. 19: 196–204, 2006.

    Article  CAS  Google Scholar 

  • Collakova, E., Della Penna, D.: The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. — Plant Physiol. 133: 930–940, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Collin, V.C., Eymery, F., Genty, B., Rey, P., Havaux, M.: Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. — Plant Cell Environ. 31: 244–257, 2008.

    CAS  PubMed  Google Scholar 

  • Conklin, P.L., Barth, C.: Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. — Plant Cell Environ. 27: 959–970, 2004.

    Article  CAS  Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell. Mol. Life Sci. 57: 779–795, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Della Penna, D.: A decade of progress in understanding vitamin E synthesis in plants. — J. Plant Physiol. 162: 729–737, 2005.

    Article  Google Scholar 

  • Della Penna, D., Last, R.L.: Progress in the dissection and manipulation of plant vitamin E biosynthesis. — Physiol. Plant. 126: 356–368, 2006.

    Article  Google Scholar 

  • Della Penna, D., Pogson, B.J.: Vitamin synthesis in plants: tocopherols and carotenoids. — Annu. Rev. Plant Biol. 57: 711–738, 2006.

    Article  Google Scholar 

  • Fryer, M.J.: The antioxidant effects of thylakoid vitamin E (α-tocopherol). — Plant Cell Environ. 15: 381–392, 1992.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Noctor, G.: Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. — Plant Cell Environ. 28: 1056–1071, 2005.

    Article  CAS  Google Scholar 

  • Guo, J., Liu, X., Li, X., Chen, S., Jin, Z., Liu, G.: Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. — Chin. J. appl. Environ. Biol. 12: 468–471, 2006.

    CAS  Google Scholar 

  • Havaux, M., Enmery, F., Porfirova, S., Rey, P., Dörmann, P.: Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. — Plant Cell 17: 3451–3469, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissue containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.

    Article  CAS  Google Scholar 

  • Hofius, D., Hajirezaei, M.R., Geiger, M., Tschiersch, H., Melzer, M., Sonnewald, U.: RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. — Plant Physiol. 135: 1256–1268, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kanwischer, M., Porfirova, S., Bergmüller, E., Dörmann, P.: Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. — Plant Physiol. 137: 713–723, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Keen, N.T.: The molecular biology of disease resistance. — Plant mol. Biol. 19: 109–122, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Raclaru, M., Schüβeler, T., Gruber, J., Sadre, R., Lühs, W., Zarhloul, K.M., Friedt, W., Enders, D., Frentzen, M., Weier, D.: Characterization of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds.–FEBS Lett. 579: 1357–1364, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Lee, S.M., Park, S.R., Jung, J., Moon, J.K., Cheong, J.J., Kim, M.: Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.). — Mol. Cells 24: 301–306, 2007.

    CAS  PubMed  Google Scholar 

  • Li, X.-M., He, X.-Y., Zhang, L.-H., Chen, W., Chen, Q.: Influence of elevated CO2 and O3 on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees. — Biol. Plant. 53: 339–342, 2009.

    Article  CAS  Google Scholar 

  • Liu, X., Hua, X., Guo, J., Qi, D., Wang, L., Liu, Z., Jin, Z., Chen, S., Liu, G.: Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. — Biotechnol. Lett. 30: 1275–1280, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, H., Sakuragi, Y., Bryant, D.A., Della Penna, D.: Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. — Plant Physiol. 138: 1422–1435, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, H., Song, W., Sage, T.L., Della Penna, D.: Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. — Plant Cell 18: 2710–2732, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mehdy, M.C.: Active oxygen species in plant defense against pathogens. — Plant Physiol. 105: 467–472, 1994.

    CAS  PubMed  Google Scholar 

  • Munné-Bosch, S.: The role of α-tocopherol in plant stress tolerance. — J. Plant Physiol. 162: 743–748, 2005.

    Article  PubMed  Google Scholar 

  • Munné-Bosch, S., Alegre, L.: The function of tocopherols and tocotrienols in plants. — Crit. Rev. Plant Sci. 21: 31–57, 2002.

    Article  Google Scholar 

  • Munné-Bosch, S., Schwarz, K., Alegre, L.: Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. — Plant Physiol. 121: 1047–1052, 1999.

    Article  PubMed  Google Scholar 

  • Nakajima, N., Itoh, T., Takikawa, S., Asai, N., Tamaoki, M., Aono, M., Kubo, A., Azumi, Y., Kamada, H., Saji, H.: Improvement in ozone tolerance of tobacco plants with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase. — Plant Cell Environ. 25: 727–735, 2002.

    Article  CAS  Google Scholar 

  • Pasqualini, S., Piccioni, C., Reale, L., Ederli, L., Torre, G.D., Ferranti, F.: Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. — Plant Physiol. 133: 1122–1134, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Pell, E.J., Eckardt, N.A., Glick, R.E.: Biochemical and molecular basis for impairment of photosynthetic potential. — Photosynth. Res. 39: 453–462, 1994.

    Article  CAS  Google Scholar 

  • Pellinen, R.I., Korhonen, M.S., Tauriainen, A.A., Palva E.T., Kangasjărvi, J.: Hydrogen peroxide activates cell death and defense gene expression in birch. — Plant Physiol. 130: 549–560, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Porfirova, S., Bergmüller, E., Tropf, S., Lemke, R., Dörmann, P.: Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. — Proc. nat. Acad. Sci. USA 99: 12495–12500, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Rippert, P., Scimemi, C., Dubald, M., Matringe, M.: Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. — Plant Physiol. 134: 92–100, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E., Rodermel, S., Inzé, D., Mittler, R.: Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. — Plant J. 32: 329–342, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Sattler, S.E., Gillilant, L.U., Magallanes-Lundback, M., Pollard, M., Della Penna, D.: Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. — Plant Cell 16: 1419–1432, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sattler, S.E., Mène-Saffrané, L., Farmer, E.E., Krischke, M., Mueller, M.J., Della Penna, D.: Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. — Plant Cell 18: 3706–3720, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C.: Chemistry and biology of vitamin E. — Mol. Nutr. Food Res. 49: 7–30, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Shintani, D.K., Zigang, C., Della Penna, D.: The role of 2-methyl-6-phytylbenzoquinone methyltransferases in determining tocopherol composition in Synechocystis sp. PCC6803. — FEBS Lett. 511: 1–5, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Soldatini, G.F., Nali, C., Guidi, L., Lorenzini, G.: Photosynthesis of Hedera canariensis var. azorica variegated leaves as affected by ozone. — Photosynthetica 35: 248–253, 1998.

    Article  Google Scholar 

  • Trebst, A., Depka, B., Höllander-Czytko, H.: A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem Π structure and function in Chlamydomonas reinhardtii. — FEBS Lett. 516: 156–160, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Uprety, D.C.: Carbon dioxide enrichment technology: Open Top Chambers a new tool for global climate research. — J. Sci. Ind. Res. 57: 266–270, 1998.

    CAS  Google Scholar 

  • Vidi, P.A., Kanwischer, M., Baginsky, S., Austin, J.R., Csucs, G., Dörmann, P., Kessler, F., Bréhélin, C.: Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. — J. biol. Chem. 281: 11225–11234, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Von Caemmerer, S. Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Wagner, J.G., Jiang, Q., Harkema, J.R., Illek, B., Patel, D.D., Ames, B.N., Peden, D.B.: Ozone enhancement of lower airway allergic inflammation is prevented by γ-tocopherol. — Free Radical Biol. Med. 4: 1176–1188, 2007.

    Article  Google Scholar 

  • Wang, X., Quinn, P.J.: The location and function of vitamin E in membranes (review). — Mol. Membr. Biol. 17: 143–156, 2000.

    Article  PubMed  Google Scholar 

  • Weber, H., Chételat, A., Reymond, P., Farmer, E.E.: Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. — Plant J. 37: 877–888, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Q. Li or G. S. Liu.

Additional information

Acknowledgements: We are grateful to our co-workers Zhiping Jin and Zhigao Du for assistance with the experiments. This research was funded by the National Basic Research Program of China (973, 2007CB108905), the National Science Foundation of China (NSFC: 30600370), and the Key Project of the Chinese Academy of Sciences (KSCX2-YW-N-50).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Li, X.F., Qi, D.M. et al. Effects of ozone on wild type and transgenic tobacco. Biol Plant 53, 670–676 (2009). https://doi.org/10.1007/s10535-009-0121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0121-0

Additional key words

Navigation