Skip to main content
Log in

The role of salicylic acid in response of two rice cultivars to chilling stress

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Two rice (Oryza sativa L.) cultivars differing in chilling sensitivity, Changbaijiu (chilling-tolerant) and Zhongjian (chilling-sensitive) were pre-treated with 0.5, 1.0 and 2.0 mM salicylic acid (SA) for 24 h before chilling at 5°C for 1 d. Chilling induced SA accumulation, particularly conjugated SA in both leaves and roots of the two rice cultivars. After SA administration, SA accumulated in the roots of both cultivars at a concentration-dependent manner, whereas only a slight increase was observed in their leaves. Conjugated SA accounted for most of the increase. The beneficial effect of SA treatment on protecting rice seedlings from chilling injury was not observed at any concentration in either cultivar. Pre-treatment with SA even decreased their chilling tolerance confirmed by increased electrolyte leakage and lipid peroxidation. Further, most of the activities of antioxidant enzymes decreased or remained unchanged in leaves and roots of SA pre-treated seedlings after chilling. These results implied that down-regulation of antioxidant defence might be involved in the reduction of chilling tolerance in SA-pre-treated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbic acid

CAT:

catalase

GPX:

guaiacol peroxidase

GR:

glutathione reductase

PR:

pathogenesis-related

PVPP:

polyvinylpolypyrrolidone

SA:

salicylic acid

SOD:

superoxide dismutase

TBA:

thiobarbituric acid

TBARS:

thiobarbituric acid reactive substances

References

  • Bernard, F., Shaker-Bazarnov, H., Kaviani, B.: Effects of salicylic acid on cold preservation and cryopreserva-tion of encapsulated embryonic axes of Persian lilac (Melia azedarach L.). — Euphytica 123: 85–88, 2002.

    Article  CAS  Google Scholar 

  • Beyer, W.F., Fridovich, I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. — Anal. Biochem. 161: 559–566, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Borsani, O., Valpuesta, V., Botella, M.A.: Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. — Plant Physiol. 126: 1024–1030, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Britton, C., Maehly, A.C.: Assay of catalase and peroxidase. — Methods Enzymol. 2: 764–775, 1955.

    Article  Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Jr., Van Montagu, M., Inzé, D., Van Camp, W.: Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. — Proc. nat. Acad. Sci. USA 95: 5818–5823, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z.X., Iyer, S., Caplan, A., Klessig, D.F., Fan, B.F.: Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. — Plant Physiol. 114: 193–201, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Dat, J.F., Foyer, C.H., Scott, I.M.: Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. — Plant Physiol. 118: 1455–1461, 1998b.

    Article  CAS  PubMed  Google Scholar 

  • Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M.: Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. — Plant Physiol. 116: 1351–1357, 1998a.

    Article  CAS  PubMed  Google Scholar 

  • Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M.: Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. — J. Plant Physiol. 156: 659–665, 2000.

    CAS  Google Scholar 

  • Dempsey, D.A., Shah, J., Klessig, D.F.: Salicylic acid and disease resistance in plants. — Crit. Rev. Plant Sci. 18: 547–575, 1999.

    Article  CAS  Google Scholar 

  • Ding, C.K., Wang, C.Y., Gross, K.C., Smith, D.L.: Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. — Planta 214: 895–901, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Grace, S.C., Logan, B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. — Plant Physiol. 112: 1631–1640, 1996.

    CAS  PubMed  Google Scholar 

  • Guo, B., Liang, Y.C., Zhu, Y.G., Zhao, F.J.: Role of salicylic acid in alleviating cadmium toxicity in rice roots. — J. Plant Nutr. 30: 427–439, 2007a.

    Article  CAS  Google Scholar 

  • Guo, Z.F., Huang, M.Y., Lu, S.Y., Zhao, Y.Q., Zhong, Q.: Differential response to paraquat induced oxidative stress in two rice cultivars on antioxidants and chlorophyll a fluorescence. — Acta Physiol. Plant. 29: 39–46, 2007b.

    Article  CAS  Google Scholar 

  • He, Y., Zhu, Z.J.: Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. — Biol. Plant. 52: 792–795, 2008.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Horváth, E., Pál, M., Szalai, G., Páldi, E., Janda, T.: Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. — Biol. Plant 51: 480–487, 2007.

    Article  Google Scholar 

  • Janda, T., Szalai, G., Tari, I., Páldi, E.: Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. — Planta 208: 175–180, 1999.

    Article  CAS  Google Scholar 

  • Kaneda, C., Beachell, H.M.: Response of indica-japonica rice hybrids to low temperatures. — Sabrao J. 6: 17–32, 1974.

    Google Scholar 

  • Kang, G.Z., Wang, C.H., Sun, G.C., Wang, Z.X.: Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. — Environ. exp. Bot. 50: 9–15, 2003.

    CAS  Google Scholar 

  • Kang, H.M., Saltveit, M.E.: Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. — Physiol. Plant. 115: 571–576, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Knörzer, O.C., Durner, J., Boger, P.: Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. — Physiol. Plant. 97: 388–396, 1996.

    Article  Google Scholar 

  • Li, Z., Yuan, Y., Li, D.: Determination of salicylate in plant leaves by combination with TLC and HPLC. — Plant Physiol. Commun. 33: 130–132, 1997.

    CAS  Google Scholar 

  • Makino, A., Mae, T., Ohira, K.: Differences between wheat and rice in the enzymatic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. — Planta 174: 30–38, 1988.

    Article  CAS  Google Scholar 

  • Malamy, J., Carr, J.P., Klessig, D.F., Raskin, I.: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. — Science 250: 1002–1004, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., Inverardi, B.: Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. — Science 250: 1004–1006, 1990.

    Article  PubMed  Google Scholar 

  • Metwally, A., Finkerneier, I., Georgi, M., Dietz, K.J.: Salicylic acid alleviates the cadmium toxicity in barley seedlings. — Plant Physiol. 132: 272–281, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, A., Choudhuri, M.A.: Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. — Biol. Plant. 42: 409–415, 1999.

    Article  CAS  Google Scholar 

  • Németh, M., Janda, T., Horváth, E., Páldi, E., Szalai, G.: Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. — Plant Sci, 162: 569–574, 2002.

    Article  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Palva, T.K., Hurtig, M., Saindrenan, P., Palva, E.T.: Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco. — Mol. Plant-Microbe Interact. 7: 356–363, 1994.

    CAS  Google Scholar 

  • Rao, M.V., Davis, K.R.: Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. — Plant J. 17: 603–614, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Raskin, I.: Role of salicylic-acid in plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 439–463, 1992.

    Article  CAS  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., Meeuse, B.J.D.: Salicylic acid levels in thermogenic and non-thermogenic plants. — Ann. Bot. 66: 369–373, 1990.

    CAS  Google Scholar 

  • Rasmussen, J.B., Hammerschmidt, R., Zook, M.N.: Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. — Plant Physiol. 97: 1342–1347, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., Hunt, M.D.: Systemic acquired resistance. — Plant Cell 8: 1809–1819, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Sawada, H., Shim, I.S., Usui, K.: Induction of benzoic acid-2-hydroxylase and salicylic acid biosynthesis — modulation by salt stress in rice seedlings. — Plant Sci. 171: 263–270, 2006.

    Article  CAS  Google Scholar 

  • Scott, I.M., Clarke, S.M., Wood, J.E., Mur, L.A.J.: Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. — Plant Physiol. 135: 1040–1049, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Senaratna, T., Touchell, D., Bunn, E., Dixon, K.: Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. — Plant Growth Regul. 30: 157–161, 2000.

    Article  CAS  Google Scholar 

  • Sharma, Y.K., Leon, J., Raskin, I., Davis, K.R.: Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. — Proc. nat. Acad. Sci. USA 93: 5099–5104, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Shim, I.S., Momose, Y., Yamamoto, A., Kim, D.W., Usui, K.: Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. — Plant Growth Regul. 39: 285–292, 2003.

    Article  CAS  Google Scholar 

  • Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Métraux, J.P., Raskin, I.: Salicylic acid in rice— biosynthesis, conjugation, and possible role. — Plant Physiol. 108: 633–639, 1995.

    CAS  PubMed  Google Scholar 

  • Tasgin, E., Atici, O., Nalbantoglu, B.: Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. — Plant Growth Regul. 41: 231–236, 2003.

    Article  CAS  Google Scholar 

  • Uknes, S., Winter, A.M., Delaney, T., Vernooij, B., Morse, A., Friedrich, L., Nye, G., Potter, S., Ward, E., Ryals, J.: Biological induction of systemic acquired resistance in Arabidopsis. — Mol. Plant-Microbe Interact. 6: 692–698, 1993.

    Google Scholar 

  • Yalpani, N., Enyedi, A.J., Leon, J., Raskin, I.: Ultraviolet light and ozone stimulate accumulation of salicyclic acid, pathogenesis-related proteins and virus resistance in tobacco. — Planta 193: 372–376, 1994.

    Article  CAS  Google Scholar 

  • Yang, Y.N., Qi, M., Mei, C.S.: Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. — Plant J. 40: 909–919, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Ren.

Additional information

Acknowledgements: We extend our sincere thanks to the Chinese Rice Research Institute and the Rice Research Institute of Jilin Academy of Agricultural Sciences for their kind donation of rice seeds. This study was supported by the Program for Key International Sciences and Technology Cooperation Project of China (2001CB711103).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D.H., Li, X.X., Su, Z.K. et al. The role of salicylic acid in response of two rice cultivars to chilling stress. Biol Plant 53, 545–552 (2009). https://doi.org/10.1007/s10535-009-0099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0099-7

Additional key words

Navigation