Skip to main content
Log in

Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

An experiment was conducted with two contrasting pigeon pea (Cajanus cajan L.) genotypes, ICPL 84023 (tolerant) and ICP 7035 (susceptible), to study the physiological and molecular basis of waterlogging tolerance in relation to oxidative stress and antioxidant enzyme activities. Waterlogging resulted in visible yellowing and premature senescence of leaves, and greater decline in relative water content, chlorophyll content, and membrane stability index in ICP 7035 than in ICPL 84023. Superoxide radical and hydrogen peroxide contents increased at day 4 and 6 of waterlogging probably due to activation of NADPH-oxidase. O2 ·− production was inhibited, by diphenylene iodonium chloride, a specific inhibitor of NADPH oxidase and expression of NADPH oxidase-mRNA was increased under waterlogging condition in ICPL 84023. ICP 7035 showed higher contents of ROS in control condition and after recovery, however, during waterlogging the O2 ·− production was higher in ICPL 84023. Activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase and catalase increased under waterlogging more in ICPL 84023 than in ICP 7035. Cu/Zn-SOD and APX-mRNA expression in 24-h waterlogged plants showed enhanced expression in ICPL 84023 compared to ICP 7035. The cloning and sequencing of APX gene of tolerant and susceptible genotypes yielded cDNAs of 622 and 623 bp, having 95 % homology with each other and 92 % with the corresponding sequences of Vigna unguiculate APX-gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

Chl:

chlorophyll

DEDC:

diethyldithiocarbamate

DPI:

diphenyleneiodonium chloride

DMSO:

dimethylsulfoxide

DTNB:

5,5-dithiobis-2-nitrobenzoic acid

EB:

ethidium bromide

GR:

glutathione reductase

GSSG:

glutathione disulfide (oxidized glutathione)

NBT:

nitroblue tetrazolium chloride

ROS:

reactive oxygen species

RT-PCR:

reverse transcriptase — polymerase chain reaction

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid relative substances

TBE:

Tris-borate-EDTA

References

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105:121–126, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal, S., Sairam, R.K., Srivastava, G.C., Tyagi, A., Meena, R.C.: Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. — Plant Sci. 169:559–570, 2005.

    Article  CAS  Google Scholar 

  • Albrecht, G., Wiedenroth, E.M.: Protection against activated oxygen following re-aeration of hypoxically pre-treated wheat roots. The response of the glutathione system. — J. exp. Bot. 45:449–455, 1994.

    Article  CAS  Google Scholar 

  • Altschul, S.R., Madden T.L., Schaffer, A.A., Zhang, Z., Zhang, J., Miller, W., Lipman, D.J.: Gapped BLAST and PSIBLAST: a new generation of protein database search programmes. — Nucleic Acids Res. 25:3389–3402, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Biemelt, S., Keetman, U., Albrecht, G.: Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. — Plant Physiol. 116:651–658, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Biemelt, S., Keetman, U., Mock, H.P., Grimm, B.: Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. — Plant Cell Environ. 23:135–144, 2000.

    Article  CAS  Google Scholar 

  • Blokhina, O.B., Chirkova, T.V., Fagerstedt, K.V.: Anoxic stress leads to hydrogen peroxide formation in plant cells. — J. exp. Bot. 52:1–12, 2001.

    Article  Google Scholar 

  • Blokhina, O.B., Fagerstedt, K.V., Chirkova, T.V.: Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. — Physiol. Plant. 105:625–632, 1999.

    Article  CAS  Google Scholar 

  • Bowler, C., Montague, M.V., Inze, D.: Superoxide dismutase and stress tolerance. — Annu. Rev. Plant Physiol. Plant mol. Biol. 43:83–116, 1992.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for quantification of proteins utilizing the principle of protein dye binding. — Anal. Biochem. 72:248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chaitanya, K.S.K., Naithani, S.C.: Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertnf. — New Phytol. 126:623–627, 1994.

    Article  CAS  Google Scholar 

  • Chirkova, T.V., Novitskaya, L.O., Blokhina, O.B.: Lipid peroxidation and antioxidant systems under anoxia in plants differing in their tolerance to oxygen deficiency. — Russ. J. Plant Physiol. 45:55–62, 1998.

    CAS  Google Scholar 

  • Collaku, A., Harrison, S.A.: Losses in wheat due to waterlogging. — Crop Sci. 42:444–450, 2002.

    Article  Google Scholar 

  • Crawford, R.M.M., Braendle, R.: Oxygen deprivation stress in a changing environment. — J. exp. Bot. 47:145–159, 1996.

    Article  CAS  Google Scholar 

  • Dhindsa, R.A., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 126:93–101, 1981.

    Article  Google Scholar 

  • Drew, MC.: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. — Annu. Rev. Plant Physiol. Plant mol. Biol. 48:223–250, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Else, M.A., Davies, W.S., Malone, M., Jackson, M.S.: A negative hydraulic message from oxygen-deficient roots of tomato plant? — Plant Physiol. 109:1017–1024, 1995.

    CAS  PubMed  Google Scholar 

  • Elstner, E.F.: Metabolism of activated oxygen species. — In: Davies, D.D. (ed.): The Biochemistry of Plants. Biochemistry of Metabolism. Vol. 11. Pp. 253–315. Academic Press, San Diego 1986.

    Google Scholar 

  • Fukao, T., Bailey-Serres, J.: Plant responses to hypoxia — is survival a balancing act? — Trends Plant Sci. 9:449–456, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Higgins, D.G., Thompson, J.D., Gibson, T.J.: Using CLUSTAL for multiple sequence alignments. — Methods Enzymol. 266:383–402, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Hiscox, J.D., Israelstam, G.F.: A method for extraction of chloroplast from leaf tissue without maceration. — Can. J. Bot. 57:1332–1334, 1979.

    Article  CAS  Google Scholar 

  • Jackson, M.B., Drew, M.C.: Effects of flooding on growth and metabolism of herbaceous plants. — In: Kozlowski, T.T. (ed.): Flooding and Plant Growth. Pp. 47–128. Academic Press, Orlando 1984.

    Google Scholar 

  • Jackson, M.B., Herman, B., Goodenogh, A.: An examination of the importance of ethanol in causing injury to flooded plants. — Plant Cell Environ. 5:163–172, 1982.

    CAS  Google Scholar 

  • Kalashnikov, Yu.E., Balakhnina, T.I., Zakrzhevsky, D.A.: Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative destruction in roots and leaves of Hordeum vulgare. — Russ. J. Plant Physiol. 41:583–588, 1994.

    CAS  Google Scholar 

  • Min, X.J., Bartholomew, D.P.: Effects of flooding and drought on ethylene metabolism, titratable acidity and fruiting of pineapple. — Acta Hort. 666:135–148, 2005.

    CAS  Google Scholar 

  • Mittler, R., Zilinskas, B.A.: Molecular cloning and characterisation of a gene encoding pea cytosolic ascorbate peroxidase. — J. biol. chem. 267:21802–21807, 1992.

    CAS  PubMed  Google Scholar 

  • Monk, L.S., Fagerstedt, K.V., Crawford, R.M.M.: Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. — Physiol. Plant. 76:456–459, 1989.

    CAS  Google Scholar 

  • Monk, L.S., Fagerstedt, K.V., Crawford, R.M.M.: Superoxide dismutase as an anaerobic polypeptide — a key factor in recovery from oxygen deprivation in Iris pseudacorus? — Plant Physiol. 85:1016–1020, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Naidoo, G.: Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymporrhiza (L.) Lam. — New Phytol. 93:369–376, 1983.

    Article  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22:867–880, 1981.

    CAS  Google Scholar 

  • Oberson, J., Pavelic, D., Braendle, R., Rawler, A.: Nitrate increases membrane stability of potato cells under anoxia. — J. Plant Physiol. 155:792–794, 1999.

    CAS  Google Scholar 

  • Ponnamperuma, F.N.: The chemistry of submerged soils. — Adv. Agron. 24:29–96, 1972.

    Article  CAS  Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P. Murr, D.P., Watkins, C.B.: Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. — Plant Physiol. 115:137–149, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Rawyler, A., Arpagaus, S., Braendle, R.: Impact of oxygen stress and energy availability on membrance stability of plant cells. — Ann. Bot. 90:499–507, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Richard, B., Couce, I., Raymond, P., Saglio, P.H., Saint-Ges, V., Pradet, A.: Plant metabolism under hypoxia and anoxia. — Plant Physiol. Biochem. 32:1–10, 1994.

    Google Scholar 

  • Sairam, R.K., Chandrasekhar, V., Srivastava, G.C.: Comparison of hexaploid and tetraploid wheat cultivars in their response to water stress. — Biol. Plant. 44:89–94, 2001.

    Article  Google Scholar 

  • Sairam, R.K., Deshmukh, P.S., Shukla, D.S.: Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. — J Agron Crop Sci. 178:171–178, 1997.

    Article  CAS  Google Scholar 

  • Sairam, R.K., Kumutha, D., Ezhilmathil, K.: Waterlogging tolerance: nonsymbiotic haemoglobin-nitric oxide homeostasis and antioxidants. — Curr. Sci. 96:674–682, 2009.

    CAS  Google Scholar 

  • Sairam, R.K., Rao, K.V., Srivastava, G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. — Plant Sci. 163:1037–1046, 2002.

    Article  CAS  Google Scholar 

  • Sairam, R.K., Srivastava, G.C., Saxena, D.C.: Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. — Biol. Plant. 43:245–251, 2000.

    Article  CAS  Google Scholar 

  • Sanger, F., Nickler, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. — Proc. nat. Acad. Sci. USA 74:5463–5467, 1977.

    Article  CAS  PubMed  Google Scholar 

  • Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid). — Anal. Biochem. 175:408–413, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Sorte, N.V., Deotah, R.D., Meshram, J.H., Chanekar, M.A.: Tolerance of soybean cultivars of waterlogging at various growth states. — J. Soil Crop Sci. 6:68–72, 1996.

    Google Scholar 

  • Tadege, M., Dupuis, I., Kuhlemeier, C.: Ethanolic fermentation: new functions for an old pathway. — Trends Plant Sci. 4:320–325, 1999.

    Article  PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G., Gibson, T.J.: Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. — Nucl. Acids Res. 22:4673–4680, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru, T., Maki, Y., Sano, S., Koshiba, K., Asada, K., Tsuji, H.: Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. — Plant Cell Physiol. 38:541–549, 1997.

    CAS  Google Scholar 

  • Van Toai, T.T., Bolles, C.S.: Postanoxic injury in soybean (Glycine max) seedlings. — Plant Physiol. 97:588–592, 1991.

    Article  Google Scholar 

  • Weatherley, P.E.: Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves. — New Phytol. 49:81–97, 1950.

    Article  Google Scholar 

  • Yan, B., Dai, Q., Liu, X., Huang, S., Wang, Z.: Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. — Plant Soil 179:261–268, 1996.

    Article  CAS  Google Scholar 

  • Younis, M.E., El-Shahaby, O.A., Nematalla, M.M., Bastawisy, Z.M.: Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays. — Agronomie 23:277–285, 2003.

    Article  Google Scholar 

  • Yu, Q., Rengel, Z.: Drought and salinity differentially influence activities of superoxide dismutase in narrow-leafed lupines. — Plant Sci. 142:1–11, 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sairam.

Additional information

Acknowledgement: Authors are grateful to the Head, Division of Plant Physiology for providing the necessary facilities, to Scientist in charge, Genetic Resources, International Centre for Research in Semi-Arid Tropics, Hyderabad, India, and Pigeon pea Breeder, Division of Genetics, Indian agricultural Research Institute, New Delhi-110012, India for providing pigeon pea germplasm. D.K. and K.E. are thankful to Council of Scientific and Industrial Research, New Delhi, India for providing the Senior Research Fellowship during the course of this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sairam, R.K., Kumutha, D., Ezhilmathi, K. et al. Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biol Plant 53, 493–504 (2009). https://doi.org/10.1007/s10535-009-0090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0090-3

Additional key words

Navigation