Skip to main content

Molecular and cytological characterization of ZTL in Ipomoea nil

Abstract

The ZEITLUPE (ZTL) protein is involved in the control of circadian period, hypocotyl elongation and flowering time in Arabidopsis thaliana. The aim of the present work was the identification of the InZTL gene and localization of its mRNA in the model short-day plant Ipomoea nil. The deduced InZTL protein of 622 amino acid residues contained a LOV domain at the N-terminal part, followed by an F-box domain and six carboxy terminal kelch repeats. Amino acid sequence of InZTL showed 84 % homology with Mesembryanthemum crystallinum ZTL (McZTL) and 83 % with Arabidopsis thaliana ZTL (AtZTL). Fluorescence in situ hybridization (FISH) to InZTL mRNA showed its high accumulation in the vascular bundles as well in the guard cells of the cotyledon. Immunolocalization of ZTL protein indicated a similar distribution pattern of ZTL protein as InZTL mRNAs.

This is a preview of subscription content, access via your institution.

Abbreviations

FISH:

fluorescence in situ hybridization

LD:

long day

PCR:

polymerase chain reaction

RT-PCR:

reverse transcriptase PCR

SD:

short day

ZTL:

ZEITLUPE

References

  1. Abd-El Baki, G.K., Siefritz, F., Man, H.M., Weiner, H., Kladenhoff, R., Kaiser, W.M.: Nitrate reductase in Zea mays under salinity. — Plant Cell Environ. 23: 515–521, 2000.

    Article  CAS  Google Scholar 

  2. Adams, J., Kelso, R., Cooley, L.: The kelch repeat super-family of proteins: propellers of cell function. — Trends Cell Biol. 10: 17–24, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Boxall, S.F., Foster, J.M., Bohnert, J.M., Cushman, H.J., Nimmo, H.G., Hartwell, J.: Conservation and divergence of circadian clock operation in a stress-inducible Crassulacean acid metabolism species reveals clock compensation against stress. — Plant Physiol. 137: 969–82, 2005.

    Article  CAS  PubMed  Google Scholar 

  4. Briggs, W.R., Christie, J.M.: Phototropins 1 and 2: versatile plant blue-light receptors. — Trends Plant Sci. 7: 204–210, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Corlett, J.E., Wilkinson, S., Thompson, A.J.: Diurnal control of the drought-inducible putative histone H1 gene in tomato. — J. exp. Bot. 49: 945–952, 1998.

    Article  CAS  Google Scholar 

  6. Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma-Bognar, L., Nagy, F., Millar, A.J., Amasion, R.M.: The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. — Nature 419: 74–77, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Dunlap, J.C.: Molecular bases of circadian clocks. — Cell 96: 271–290, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Endo, M., Mochizuki, N., Suzuki, T., Nagatani, A.: CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. — Plant Cell 19: 84–93, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Endo, M., Nakamura, S., Araki, T., Mochizuki, N., Nagatani, A.: Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. — Plant Cell 17: 1941–1952, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Fankhauser, C., Staiger, D.: Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. — Planta 216: 1–16, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Fukamatsu, Y., Mitsui, S., Yasuhara, M., Tokioka, Y., Ihara, N., Fujita, S., Kiyosue, T.: Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies. — Plant Cell Physiol. 46: 1340–1349, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Gardner, M.J., Hubbard, K.E., Hotta, C.T., Dodd, A.N., Webb, A.A.: How plants tell the time. — Biochem. J. 397: 1–24, 2006.

    Article  Google Scholar 

  13. Gorton, H.L., Williams, W.E., Binns, M.E., Gemmell, C.N., Leheny, E.A., Shepherd, C.A.: Circadian stomatal rhythms in epidermal peels from Vicia faba. — Plant Physiol. 90: 1329–1334, 1989.

    Article  PubMed  Google Scholar 

  14. Hall, A., Kozma-Bognar, L., Toth, R., Nagy, F., Millar, A.J.: Conditional circadian regulation of PHYTOCHROME A gene expression. — Plant Physiol. 127: 1808–1818, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Kiba, T., Henriques, R., Sakakibara, H., Chua, N.H.: Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by a SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. — Plant Cell 19: 2516–2530, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, W.Y., Fujiwara, S., Suh, S.S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., Somers, D.E.: ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. — Nature 449: 356–360, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, W.Y., Hicks, K.A., Somers, D.E.: Independent roles for Early Flowering 3 and ZEITLUPE in the control of circadian timing, hypocotyl elongation and flowering time. — Plant Physiol. 139: 1557–1569, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Kinoshita, T., Shimazaki K.-I.: Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard — cell plasma membrane H+-ATPase by blue light. — Plant Cell Physiol. 43: 1359–1365, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Kiyosue, T., Wada, M.: LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. — Plant J. 23: 807–815, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Mas, P., Kim, W.Y., Somers, D.E., Kay, S.A.: Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. — Nature 426: 567–570, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Oda, A., Sakuta, C., Masuda, S., Mizoguchi, T., Kamada, H., Satoh, S.: Possible involvement of leaf gibberelins in the clock-controlled expression of XP30, a gene encoding a XYLEM SAP LECTIN, in cucumber roots. — Plant Physiol. 133: 1779–1790, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Salome, P.A., McClung, C.R.: The Arabidopsis thaliana clock. — J. biol. Rhythms 19: 425–435, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Schultz, T.F., Kiyosue, T., Yanovsky, M., Wada, M., Kay, S.A.: A role for LKP2 in the circadian clock of Arabidopsis. — Plant Cell 13: 2659–2670, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Somers, D.E.: The physiology and molecular bases of the plant circadian clock. — Plant Physiol. 121: 9–19, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Somers, D.E., Devlin, P.F., Kay, S.A.: Phytochromes and cryptochromes in the entrainment of Arabidopsis circadian clock. — Science 282: 1488–1490, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Somers, D.E, Kim, W.Y, Geng, R.: The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. — Plant Cell 16: 769–782, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Somers, D.E., Schultz, T.F., Milnamow, M., Kay, S.A.: ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. — Cell 101: 319–329, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Takada, S., Goto, K.: TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. — Plant Cell 15: 2856–2865, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Yasuhara, M., Mitsui, S., Hirano, H., Takanabe, R., Tokioka, Y., Ihara, N., Komatsu, A., Seki, M., Shinozaki, K., Kiyosue, T.: Identification of ASK clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis. — J. exp. Bot. 55: 2015–2027, 2004.

    Article  CAS  PubMed  Google Scholar 

  30. Zeiger, E., Talbott, L.D., Frechilla, S., Srivastava, A., Zhu, J.X.: The guard cell chloroplast: a perspective for the twenty-first century. — New Phytol. 153: 415–424, 2002.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Zienkiewicz.

Additional information

Acknowledgements: We thank Prof. David Somers from The Ohio State University, Columbus, USA, for the anti-ZTL antibody. This work was supported by a UMK Grant (project 460-B).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zienkiewicz, A., Smoliński, D.J., Zienkiewicz, K. et al. Molecular and cytological characterization of ZTL in Ipomoea nil . Biol Plant 53, 435 (2009). https://doi.org/10.1007/s10535-009-0083-2

Download citation

Additional key words

  • fluorescence in situ hybridization (FISH)
  • short-day plant
  • circadian clock