Biologia Plantarum

, Volume 53, Issue 2, pp 201–212 | Cite as

Agrobacterium-mediated genetic transformation of plants: The role of host

  • O. Karami
  • M. Esna-Ashari
  • G. Karimi Kurdistani
  • B. Aghavaisi
Review

Abstract

Agrobacterium-mediated genetic transformation is the most widely used technology to obtain overexpression of recombinant proteins in plants. Molecular events that occur within Agrobacterium during interactions with host plants have been studied extensively, and now we have a reasonable understanding the key factors involved in the regulation of T-DNA nuclear import and genomic integration. By contrast, very little is known about the events that take place in the host cells during genetic transformation by Agrobacterium. Here, we describe the plant-related factors including genotype, genes, proteins, competency of target tissues and phenolic compounds that participate in Agrobacterium-mediated genetic transformation and discuss their possible roles in this process. Because Agrobacterium probably adapts existing cellular processes for its life cycle, identifying the processes in host cells during Agrobacterium infection might contribute to better understanding of basic biological processes as cell communication, intracellular transport and DNA repair and recombination as well as to expanding the host range of Agrobacterium as a genetic engineering tool.

Additional key words

T-DNA vir gene VIR protein 

Abbreviations

AS

acetosyringone

BA

benzyladenine

2,4-D

2,4-dichlorophenoxyacetic acid

GUS

β-glucuronidase

HR

homologous recombination

MAPK

mitogen-activated protein kinase

MDIBOA

2-hydroxy-4,7-dimethoxybenzoxazin

miRNA

microRNA

NHEJ

non-homologues end-joining

NHR

non-homologous recombination

NLS

nuclear localization signal

PAMP

pathogen associated molecular patterns

PRR

pattern recognition receptors

SA

salicylic acid

SAR

systemic acquired resistance

SCF

Skp1-cullin-F-box

T-complex

T-strand-protein complex

T-DNA

transferred DNA

VIR

virulence

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akira, S., Takeda, K.: Toll-like receptor signalling.-Nat. Rev. Immunol. 4: 499–511, 2004.PubMedCrossRefGoogle Scholar
  2. Aldemita, R.R., Hodges, T.K.: Agrobacterium tumefaciens mediated transformation of japonica and indica rice varieties.-Planta 199: 612–617, 1996.CrossRefGoogle Scholar
  3. Anand, A., Vaghchhipawala, Z., Ryu, C.M., Kang, L., Wang, K., Del-Pozo, O., Martin, G.B., Mysore, K.S.: Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing.-Mol. Plant Microbe Interact. 20: 41–52, 2007.PubMedCrossRefGoogle Scholar
  4. Anderson, A., Moore, L.: Host specificity in the genus Agrobacterium.-Phytopathology 69: 320–323, 1979.CrossRefGoogle Scholar
  5. Arencibia, AD., Carmona, E.R.C., Tellez, P., Chan, M.T., Yu, S.M., Trujillo, L.E., Oramas, P.: An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens.-Transgenic Res. 7: 213–222, 1998.CrossRefGoogle Scholar
  6. Baek, S.H., Shapleigh, J.P.: Expression of nitrite and nitric oxide reductases in free-living and plant-associated Agrobacterium tumefaciens C58 cells.-Appl. environ. Microbiol. 71: 4427–36, 2005.PubMedCrossRefGoogle Scholar
  7. Bakó, L., Umeda, M., Tiburcio, A.F., Schell, J., Koncz, C.: The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants.-Proc. nat. Acad. Sci. USA 100: 10108–10113, 2003.PubMedCrossRefGoogle Scholar
  8. Ballas, N., Citovsky, V.: Nuclear localization of signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein.-Proc. nat. Acad. Sci. USA 94: 10723–10728, 1997.PubMedCrossRefGoogle Scholar
  9. Beneddra, T., Picard, C., Nesme, X.: Correlation between susceptibility to crown gall and sensitivity to cytokinin in aspen cultivars.-Phytopathology 86: 225–231, 1996.CrossRefGoogle Scholar
  10. Bergmann, B., Stomp, A.M.: Effect of host plant genotype and growth rate on Agrobacterium tumefaciens-mediated gall formation in Pinus radiata.-Phytopathology 82: 1457–1462, 1992.CrossRefGoogle Scholar
  11. Braun, A.: Thermal studies on the factors responsible for tumour induction in crown gall.-Amer. J. Bot. 34: 234–240, 1947.CrossRefGoogle Scholar
  12. Braun, A.: The physiology of plant tumors.-Annu. Rev. Plant Physiol. 5: 133–192, 1954.CrossRefGoogle Scholar
  13. Bříza, J., Pavingerová, D., Přikrylová, P., Gazdová, J., Vlasák, J., Niedermeierová, H.: Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformation of tomato and potato.-Biol. Plant. 52: 453–461, 2008.CrossRefGoogle Scholar
  14. Burr, T.J., Bazzi, C., Sule, S., Otten, L.: Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies.-Plant Dis. 82: 1288–1297, 1998.CrossRefGoogle Scholar
  15. Carlos, H., Carvalho, S., Zehr, U.B., Gunaratna, N., Anderson, J., Kononowicz, H.H., Hodges, T.K., Axtell, J.D.: Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency.-Genet. Mol. Biol. 27: 259–269, 2004.Google Scholar
  16. Carvalho, C.H.S., Zehr, U.B., Gunaratna, N., Anderson, J.M., Kononowicz, H.H., Hodges, T.K., Axtell, J.D.: Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency.-Genet. mol. Biol. 27: 259–269, 2004.Google Scholar
  17. Chateau, S., Sangwa, R.S., Sangwan-Norreel, B.S.: Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones.-J. exp. Bot. 51: 1961–1968, 2000.PubMedCrossRefGoogle Scholar
  18. Cheng, M., Fry, J.E.: An improved efficient Agrobacterium-mediated plant transformation method.-Int. Patent Publ. WO 0034/491, 2000.Google Scholar
  19. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T., Wan, Y.: Genetic transformation of wheat mediated by Agrobacterium tumefaciens.-Plant Physiol. 115: 971–980, 1997.PubMedGoogle Scholar
  20. Cheng, M., Hu, T., Layton, J.I., Lium, C.N., Fry, J.E.: Desiccation of plant tissues post Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat.-In Vitro cell. dev. Biol. Plant. 39: 595–604, 2003.CrossRefGoogle Scholar
  21. Cheng, M., Lowe, B.A., Spencer, M., Ye, X., Armstrong, C.L.: Factors influencing Agrobacterium-mediated transformation of monocotyledonous species.-In Vitro cell. dev. Biol. Plant. 40: 31–45, 2004.CrossRefGoogle Scholar
  22. Cho, M.-A., Moon, C.-Y., Liu, J.-R., Choi, P.-S.: Agrobacterium-mediated transformation in Citrullus lanatus.-Biol. Plant. 52: 365–369, 2008.CrossRefGoogle Scholar
  23. Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., Cascales, E.: Biogenesis, architecture, and function of bacterial type IV secretion systems.-Annu. Rev. Microbiol. 59: 451–485, 2005.PubMedCrossRefGoogle Scholar
  24. Confalonieri, M., Balestrazzi, A., Cella, R.: Genetic transformation of Populus deltoides and Populus euramericana clones using Agrobacterium tumefaciens.-Plant Cell Tissue Organ Cult. 48: 53–61, 1997.CrossRefGoogle Scholar
  25. Davis, M.E., Miller, A.R., Lineberger, R.D.: Temporal competence for transformation of Lycopersicon esculentum Mill. cotyledons by Agrobacterium tumefaciens: relation to wound-healing and soluble plant factors.-J. exp. Bot. 42: 35–64, 1991.CrossRefGoogle Scholar
  26. De Block, M.: Factors influencing the tissue culture and Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones.-Plant Physiol. 93: 1110–1116, 1990.PubMedCrossRefGoogle Scholar
  27. De Cleene, M., De Ley, J.: The host range of crown gall.-Bot. Rev. 42: 389–466, 1976.CrossRefGoogle Scholar
  28. De Kathen, A., Jacobsen, H.-J.: Cell competence for Agrobacterium-mediated DNA transfer in Pisum sativum L.-Transgen. Res. 4: 184–191, 1995.CrossRefGoogle Scholar
  29. Ditt, R.F., Kerr, K.F., Figueiredo, P., Delrow, J., Comai, L., Nester, E.W.: The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens.-Mol. Plant Microbe Interact. 19: 665–681, 2006.PubMedCrossRefGoogle Scholar
  30. Ditt, R.F., Nester, E.W., Comai, L.: Plant gene expression response to Agrobacterium tumefaciens.-Proc. nat. Acad. Sci. USA 98: 10954–10959, 2001.PubMedCrossRefGoogle Scholar
  31. Ditt, R.F., Nester, E., Comai, L.: The plant cell defense and Agrobacterium tumefaciens.-FEMS Microbiol. Lett. 247: 207–213, 2005.PubMedCrossRefGoogle Scholar
  32. Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., Hirt, H.: Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling.-Science 318: 453–456, 2007.PubMedCrossRefGoogle Scholar
  33. Doty, S.L., Yu, N.C., Lundin, J.I., Heath, J.D., Nester, E.W.: Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens.-J. Bacteriol. 4: 961–970, 1996.Google Scholar
  34. Dunoyer, P., Himber, C., Voinnet, O.: Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections.-Nat. Genet. 38: 258–262, 2006.PubMedCrossRefGoogle Scholar
  35. Durrant, W.E., Dong, X.: Systemic acquired resistance.-Annu. Rev. Phytopathol. 42: 185–209, 2004.PubMedCrossRefGoogle Scholar
  36. Duval, B., Shetty, K.: The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract.-J. Food Biochem. 25: 361–377, 2001.CrossRefGoogle Scholar
  37. Enriquez-Obregon, G.A., Prieto-Samsonov, D.L., De la Riva, G.A., Perez, M.I., Selman Housein, G., Vazquez-Padron, R.I.: Agrobacterium-mediated Japonica rice transformation: a procedure assisted by an antinecrotic treatment.-Plant Cell Tissue Organ Cult. 59: 1659–168l, 1999.CrossRefGoogle Scholar
  38. Fang, Y.D., Akula, C., Altpete, F.: Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions.-J. Plant Physiol. 159: 1131–1138, 2002.CrossRefGoogle Scholar
  39. Fortin, C., Nester, E.W., Dion, P.: Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone.-J. Bacteriol. 174: 5676–5685, 1992.PubMedGoogle Scholar
  40. Friesner, J., Britt, A.B.: Ku80-and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration.-Plant J. 34: 427–440, 2003.PubMedCrossRefGoogle Scholar
  41. Gallego, M.E., Bleuyard, J.Y., Daoudal-Cotterell, S., Jallut, N., White, C.I.: Ku80 plays a role in nonhomologous recombination but is not required for T-DNA integration in Arabidopsis.-Plant J. 35: 557–565, 2003.PubMedCrossRefGoogle Scholar
  42. Gao, Z., Xie, X., Ling, Y., Muthukrishnan, S., Liang, G.H.: Agro-bacterium tumefaciens-mediated sorghum transformation using a mannose selection system.-Plant Biotechnol. J. 3: 591–599, 2005.PubMedCrossRefGoogle Scholar
  43. Gaspar, Y.M., Nam, J., Schultz, C.J., Lee, L.Y., Gilson, P.R., Gelvin, S.B., Bacic, A.: Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation.-Plant Physiol. 135: 2162–2171, 2004.PubMedCrossRefGoogle Scholar
  44. Geier, T., Sangwan, R.S.: Histology and chemical segregation reveal cell-specific differences in the competence for regeneration and Agrobacterium-mediated transformation in Kohleria internode explants.-Plant Cell Rep. 15: 386–390, 1996.CrossRefGoogle Scholar
  45. Gelvin, S.B.: Agrobacterium-mediated plant transformation: the biology behind the ‘gene-jockeying’ tool.-Microbiol. mol. Biol. Rev. 67: 16–37, 2003.PubMedCrossRefGoogle Scholar
  46. Gordon-Kamm, W., Dilkes, B.P., Lowe, K., Hoerster, G., Sun, X., Oss, M., Church, L., Bunde, C., Farrell, J., Maddock, S., Synder, J., Ykes, L., Li, Z., Woo, Y.M., Idney, D., Larkins, B.A.: Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway.-Proc. nat. Acad. Sci. USA 99: 11975–11980, 2002.PubMedCrossRefGoogle Scholar
  47. Grant, M., Lamb, C.: Systemic immunity.-Curr. Opin. Plant Biol. 9: 414–420, 2006.PubMedCrossRefGoogle Scholar
  48. Hansen, G.: Evidence for Agrobacterium-induced apoptosis in maize cells.-Mol. Plant-Microbe Interact. 13: 649–657, 2000.PubMedCrossRefGoogle Scholar
  49. Hansen, G., Durham, N.C.: Plant transformation methods.-US Patent No. 6,162,965, 2000.Google Scholar
  50. Heath, J.D., Boulton, M.L., Raineri, D.M., Doty, S.L., Mushegian, A.R., Harles, T.C., Davies, J.W., Nester, E.W.: Discrete regions f the sensor protein virA determine the strain-specific ability of Agrobacterium to agroinfect maize.-Mol. Plant-Microbe Interact. 10: 221–227, 1997.PubMedCrossRefGoogle Scholar
  51. Herath, S.P., Suzuki, T., Hattori, K.: Factors influencing Agrobacterium-mediated genetic transformation of kenaf.-Plant Cell Tissue Organ Cult. 82: 201–206, 2005.CrossRefGoogle Scholar
  52. Hiei, Y., Komari, T., Kubo, T.: Transformation of rice mediated by Agrobacterium tumefaciens.-Plant mol. Biol. 35: 205–218, 1997.PubMedCrossRefGoogle Scholar
  53. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T.: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.-Plant J. 6: 271–282, 1994.PubMedCrossRefGoogle Scholar
  54. Hood, E.E., Fraley, R.T., Chilton, M.-D.: Virulence of Agrobacterium tumefaciens strain A281 on legumes.-Plant Physiol. 83: 529–534, 1987.PubMedCrossRefGoogle Scholar
  55. Hwang, H.H., Gelvin, S.B.: Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation.-Plant Cell 16: 3148–3167, 2004.PubMedCrossRefGoogle Scholar
  56. Ingle, R.A., Carstens, M., Denby, K.J.: PAMP recognition and the plant-pathogen arms race.-Bioessays 28: 880–889, 2006.PubMedCrossRefGoogle Scholar
  57. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., Kumashiro, T.: High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens.-Nat. Biotechnol. 14: 745–750, 1996.PubMedCrossRefGoogle Scholar
  58. James, D.J., Uratsu, S., Cheng, J., Negri, P., Viss, P., Dandekar, A.M.: Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple.-Plant Cell Rep. 12: 559–563, 1993.CrossRefGoogle Scholar
  59. Jin, S., Roitisch, T., Christie, P.J., Nester, E.W.: The regulatory VirG protein specifically binds to a cis acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes.-J. Bacteriol. 172: 531–537, 1990.PubMedGoogle Scholar
  60. Johnson, T.M., Das, A.: Organization and regulation of expression of the Agrobacterium virulence genes.-In: Spaink, H.P., Kondorosi, A., Hooykaas, P.J.J. (ed.): The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Pp. 265–279. Kluwer Academic Publishers, Dordrecht 1998.Google Scholar
  61. Jones, J.D.G., Dangl, J.L.: The plant immune system.-Nature 444: 323–329, 2006.PubMedCrossRefGoogle Scholar
  62. Joubert, P., Beaupère, D., Lelièvre, P., Wadouachi, A., Sangwan, R.S., Sangwan-Norreel, B.S.: Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction a plausible molecular mechanism of phenol binding protein activation.-Plant Sci. 162: 733–743, 2002.CrossRefGoogle Scholar
  63. Kant, P., Kant, S., Jain, R.K., Chaudhury, V.K.: Agrobacterium-mediated high frequency transformation in dwarf recalcitrant rice cultivars.-Biol. Plant. 51: 61–68, 2007.CrossRefGoogle Scholar
  64. Karami, O., Deljou, A., Kordestani, G.K.: Secondary somatic embryogenesis of carnation (Dianthus caryophyllus).-Plant Cell Tissue Organ Cult. 92: 273–280, 2008.CrossRefGoogle Scholar
  65. Karami, O., Deljou, A., Mahmodi Pour, A.: Repetitive somatic embryogenesis in carnation on picloram supplemented media.-Plant Growth Regul. 51: 33–39, 2007.CrossRefGoogle Scholar
  66. Komari, T., Kubo, T.: Methods in genetic transformation: Agrobacterium tumefaciens.-In: Vasil, I.K. (ed.): Molecular Improvement of Cereal Crops. Pp. 43–83. Kluwer Academic Publishers, Dordrecht 1999.Google Scholar
  67. Kumlehn, J., Serazetdinora, L., Hensel, G., Becker, D., Loerz, H.: Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen culture with Agrobacterum tumefaciens.-Plant Biotechnol. J. 4: 251–258, 2006.PubMedCrossRefGoogle Scholar
  68. Lacroix, B., Li, J., Tzfira, T., Citovsky, V.: Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell.-Can. J. Physiol. Pharmacol. 84: 333–345, 2006b.PubMedCrossRefGoogle Scholar
  69. Lacroix, B., Tzfira, T., Vainstein, A., Citovsky, V.: A case of promiscuity: Agrobacterium’s endless hunt for new partners.-Trends Genet. 22: 29–37, 2006a.PubMedCrossRefGoogle Scholar
  70. Lacroix, B., Vaidya, M., Tzfira, T., Citovsky, V.: The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation.-EMBO J. 24: 428–437, 2005.PubMedCrossRefGoogle Scholar
  71. Li, J., Krichevsky, A., Vaidya, M., Tzfira, T., Citovsky, V.: Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium.-Proc. nat. Acad. Sci. USA 102: 5733–5738, 2005.PubMedCrossRefGoogle Scholar
  72. Li, X-Q., Liu, C.-N., Ritchie, S.W., Peng, J.Y., Gelvin, S.B., Hodgcs, TK.: Factors influencing Agrobacterium-mediated transient expression of gusA in rice.-Plant mol. Biol. 20: 1037–1048, 1992.PubMedCrossRefGoogle Scholar
  73. Lippincott, B.B., Whatley, M.H., Lippincott, J.A.: Tumor induction by Agrobacterium involves attachment of bacterium to a site on host plant-cell wall.-Plant Physiol. 59: 388–390, 1977.PubMedCrossRefGoogle Scholar
  74. Liu, P., Nester, E.W.: Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58.-Proc. nat. Acad. Sci. USA 103: 4658–4662, 2006.PubMedCrossRefGoogle Scholar
  75. Lowe, B.A., Krul, W.R.: Physical, chemical, developmental, and genetic factors that modulate the Agrobacterium-Vitis interaction.-Plant Physiol. 96: 121–129, 1991.PubMedCrossRefGoogle Scholar
  76. Loyter, A., Rosenbluh, J., Zakai, N., Li, J., Kozlovsky, S.V., Tzfira, T., Citovsky, V.: The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin?-Plant Physiol 138: 1318–1321, 2005.PubMedCrossRefGoogle Scholar
  77. Mannie, S., Morgens, P.H., Scorza, R., Cordts, J.M., Callahan, A.M.: Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plant.-Natur. Biotechnol. 9: 853–857, 1991.CrossRefGoogle Scholar
  78. Maresh, J., Zhang, J., Lynn, D.G.: The innate immunity of maize and the dynamic chemical strategies regulating two-component signal transduction in Agrobacterium tumefaciens.-ACS Chem. Biol. 1: 165–175, 2006.PubMedCrossRefGoogle Scholar
  79. McCormac, A.C., Wu, H., Bao, M., Wang, Y., Xu, R., Elliot, C.M., Chen, D.F.: The use of visual marker genes as cell specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestium L.) and barley (Hordeum vulgare L.).-Euphytica 99: 17–25, 1998.CrossRefGoogle Scholar
  80. McCullen, C.A., Binns, A.N.: Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer.-Annu. Rev. cell. dev. Biol. Plant 22: 101–127, 2006.CrossRefGoogle Scholar
  81. Mondal, T.K., Bhattacharya, A., Ahuja, P.S., Chand, P.K.: Transgenic tea (Camellia sinensis (L) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium mediated transformation of somatic embryos.-Plant Cell Rep. 20: 712–720, 2001.CrossRefGoogle Scholar
  82. Mysore, K.S., Nam, J., Gelvin, S.B.: An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration.-Proc. nat. Acad. Sci. USA 97: 948–953, 2000.PubMedCrossRefGoogle Scholar
  83. Nadolska-Orczyk, A., Orczyk, W.: Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.).-Mol. Breed. 6: 185–194, 2000.CrossRefGoogle Scholar
  84. Nam, J., Matthysse, A.G., Gelvin, S.B.: Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration.-Plant Cell 9: 317–333, 1997.PubMedCrossRefGoogle Scholar
  85. Nam, J., Mysore, K.S., Zheng, C., Knue, M.K., Matthysse, A.G., Gelvin, S.B.: Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium.-Mol. gen. Genet. 261: 429–438, 1999.PubMedCrossRefGoogle Scholar
  86. Nandakumar, R., Chen, L., Rogers, S.M.D.: Factors affecting the Agrobacterium-mediated transient transformation of the wetland monocot, Typha latifolia.-Plant Cell Tissue Organ Cult. 79: 31–38, 2004.CrossRefGoogle Scholar
  87. Olhoft, P.M., Flagel, L.E., Donovan, C.M., Somers, D.A.: Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method.-Planta 216: 723–735, 2003.PubMedGoogle Scholar
  88. Owens, L.D., Cress, D.E.: Genotypic to variability of soybean response Agrobacterium strains harboring the Ti or Ri plasmids.-Plant Physiol. 77: 87–94, 1984.CrossRefGoogle Scholar
  89. Parrott, D.L., Anderson, A.J., Carman, J.G.: Agrobacterium induces plant cell death in wheat (Triticum estivum L.).-Physiol. mol. Plant Pathol. 60: 59–69, 2002.CrossRefGoogle Scholar
  90. Paulsson, M., Wadstrom, T.: Vitronectin and type-I collagen binding by Staphylococcus aureus and coagulase-negative streptococci.-FEMS Microbiol. Immunol. 65: 55–62, 1990.CrossRefGoogle Scholar
  91. Perl, A., Lotan, O., Abu-Abeid, M., Holland, D.: Establishment of an Agrobacterium-mediated genetic transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interaction.-Natur. Biotechnol. 14: 624–628, 1996.CrossRefGoogle Scholar
  92. Porter, J.R.: Host range and implications of plant infection by Agrobacterium rhizogenes.-Crit. Rev. Plant Sci. 10: 387–421, 1991.CrossRefGoogle Scholar
  93. Potrykus, I.: Gene transfers to plants: assessment of published approaches and results.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 205–225, 1991.CrossRefGoogle Scholar
  94. Potrykus, I.: Gene transfer to cereal: an assessment.-Natur. Biotechnol. 8: 535–542, 1990.CrossRefGoogle Scholar
  95. Pu, X.A., Goodman, R.N.: Induction of necrogenesis by Agrobacterium tumefaciens on grape explants.-Physiol. mol. Plant Pathol. 41: 245–254, 1992.CrossRefGoogle Scholar
  96. Rashid, H., Yokoi, S., Toriyama, K., Hinata, K.: Transgenic plant production mediated by Agrobacterium in indica rice.-Plant Cell Rep. 15: 727–730, 1996.CrossRefGoogle Scholar
  97. Regensburg-Tuink, A.J., Hooykaas, P.J.J.: Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens.-Nature 363: 69–71, 1993.PubMedCrossRefGoogle Scholar
  98. Repellin, A., Baga, M., Jauhar, P.P., Chibbar, R.N.: Genetic enrichment of cereal crops via alien gene transfer: new challenges.-Plant Cell Tissue Organ. Cult. 64: 159–183, 2001.CrossRefGoogle Scholar
  99. Ritchie, S.W., Liu, C.-N., Sellmer, J.C., Kononowicz, H., Hodges, T.K.: Agrobacterium tumefaciens-mediated expression of gusA in maize tissues.-Transgenic Res. 2: 252–265, 1993.CrossRefGoogle Scholar
  100. Roberts, R.L., Metz, M., Monks, D.E., Mullaney, M.L., Hall, T., Nester, E.W.: Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants.-Proc. nat. Acad. Sci. USA 100: 6634–6639, 2003.PubMedCrossRefGoogle Scholar
  101. Salas, M.G., Park, S.H., Srivatanakul, M., Smith, R.H.: Temperature influence on stable T-DNA integration in plant cells.-Plant Cell Rep. 20: 701–705, 2001.CrossRefGoogle Scholar
  102. Saini, R., Jaiwal, P.K.: Agrobacterium tumefaciens-mediated transfromation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer.-Biol. Plant. 51: 75–79, 2007.CrossRefGoogle Scholar
  103. Sangwan, R.S., Bourgeois, Y., Brown, S., Vasseur, G., Sangwan-Norreel, B.S.: Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana.-Planta 188: 439–456, 1992.CrossRefGoogle Scholar
  104. Santarem, E.R., Trick, H.N., Essig, J.S., Finer, J.J.: Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression.-Plant Cell Rep. 17: 752–759, 1998.CrossRefGoogle Scholar
  105. Schlappi, M., Hohn, B.: Competence of immature maize embryos for Agrobacterium-mediated gene transfer.-Plant Cell 4: 7–16, 1992.PubMedCrossRefGoogle Scholar
  106. Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuink, T.J., Crosby, W.L., Hooykaas, P.J.: Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein.-Curr. Biol. 11: 258–262, 2001.PubMedCrossRefGoogle Scholar
  107. Shou, H., Frame, B.R., Whitham, S.A., Wang, K.: Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation.-Mol. Breed. 13: 201–208, 2004.CrossRefGoogle Scholar
  108. Shrawat, A.K., Beckera, D., Lörz, H.: Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.).-Plant Sci. 172: 281–290, 2007.CrossRefGoogle Scholar
  109. Spencer, P.A., Tanaka, A., Towers, G.H.N.: An Agrobacterium signal compound from grapevine cultivars.-Phytochemistry 29: 3785–3788, 1990.CrossRefGoogle Scholar
  110. Stachel, S.E., Messens, E., Van Montagu, M., Zambryski, P.: Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens.-Nature 318: 624–629, 1985.CrossRefGoogle Scholar
  111. Sunilkumar, G., Rathore, K.S.: Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration.-Mol. Breed. 8: 37–52, 2001.CrossRefGoogle Scholar
  112. Tao, Y., Rao, P.K., Bhattacharjee, S., Gelvin, S.B.: Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2.-Proc. nat. Acad. Sci. USA 101: 5164–5169, 2004.PubMedCrossRefGoogle Scholar
  113. Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., Brettell, R.: Agrobacterium tumefaciens-mediated barley transformation.-Plant J. 11: 1369–1376, 1997.CrossRefGoogle Scholar
  114. Tinland, B., Schoumacher, F., Gloeckler, V., Bravo-Angel, A.M., Hohn, B.: The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome.-EMBO J. 14: 3585–3595, 1995.PubMedGoogle Scholar
  115. Toki, S.: Rapid and efficient Agrobacterium-mediated transformation in rice.-Plant mol. Biol. Rep. 15: 16–21, 1997.CrossRefGoogle Scholar
  116. Trifonova, A., Madsen, S., Olesen, A.: Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions.-Plant Sci. 161: 871–880, 2001.CrossRefGoogle Scholar
  117. Turk, S.C.H.J., Melchers, L.S., Den Dulk-Ras, H., Regensburg-Tuink, A.J.G., Hooykaas, P.J.J.: Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the virA sensor protein.-Plant mol. Biol. 16: 1051–1059, 1991.PubMedCrossRefGoogle Scholar
  118. Tzfira, T., Citovsky, V.: Agrobacterium-mediated genetic transformation of plants: biology and biotechnology.-Curr. Opin. Biotechnol. 17: 147–154, 2006.PubMedGoogle Scholar
  119. Tzfira, T., Citovsky, V.: Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium.-Trends cell. Biol. 12: 121–129, 2002.PubMedCrossRefGoogle Scholar
  120. Tzfira, T., Li, J., Lacroix, B., Citovsky, V.: Agrobacterium T-DNA integration: molecules and models.-Trends Genet. 20: 375–383, 2004b.PubMedCrossRefGoogle Scholar
  121. Tzfira, T., Vaidya, M., Citovsky, V.: VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity.-EMBO J. 20: 3596–3607, 2001.PubMedCrossRefGoogle Scholar
  122. Tzfira, T., Vaidya, M., Citovsky, V.: Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1.-Proc. nat. Acad. Sci. USA 99: 10435–10440, 2002.PubMedCrossRefGoogle Scholar
  123. Tzfira, T., Vaidya, M., Citovsky, V.: Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium.-Nature 431: 87–92, 2004a.PubMedCrossRefGoogle Scholar
  124. Urushibara, S., Tozawa, Y., Kawagishi-Kobayashi, M., Wakasa, K.: Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens.-Breed. Sci. 5: 33–38, 2001.CrossRefGoogle Scholar
  125. Usami, S., Morikawa, S., Takebe, I., Machida, Y.: Absence of monocotyledonous plants of the diffusible plant factors inducing T-DNA circulation and vir gene expression in Agrobacterium.-Mol. gen. Genet. 290: 221–226, 1987.CrossRefGoogle Scholar
  126. Valvekens, D., Van Montagu, M., Van-Lijsebettens, M.: Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection.-Proc. nat. Acad. Sci. USA 85: 5536–5540, 1988.PubMedCrossRefGoogle Scholar
  127. Van Attikum, H., Hooykaas, P.J.J.: Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae.-Nucl. Acids Res. 102: 12265–12269, 2003.Google Scholar
  128. Van Attikum, H., Bundock, P., Hooykaas, P.J.J.: Nonhomologous end-joining proteins are required for Agrobacterium T-DNA integration.-EMBO J. 20: 6550–6558, 2001.PubMedCrossRefGoogle Scholar
  129. Van der Hoorn, R.A.L., Laurentm, F., Roth, R., De Wit, P.J.G.M.: Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis.-Mol. Plant-Microbe Interact. 13: 439–446, 2000.PubMedCrossRefGoogle Scholar
  130. Van Roekel, J.S.C., Damm, B., Melchers, L.S., Hoekema, A.: Factors influencing transformation frequency of tomato (Lycopersicon esculentum).-Plant Cell Rep. 12: 644–647, 1993.CrossRefGoogle Scholar
  131. Veena, J.H., Doerge, R.W., Gelvin, S.B.: Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression.-Plant J. 35: 219–226, 2003.PubMedCrossRefGoogle Scholar
  132. Vergunst, A.C., Schrammeijer, B., Den Dulk-Ras, A., De Vlaam, C.M.T., Regensburg-Tuink, T.J., Hooykaas, P.J.J.: VirB/D4-dependent protein translocation from Agrobacterium into plant cells.-Science 290: 979–982, 2000.PubMedCrossRefGoogle Scholar
  133. Villemont, E., Dubois, F., Sangwan, R.S., Vasseur, G., Bourgeois, Y., Sangwan-Norreel, B.S.: Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer.-Planta 201: 160–172, 1997.CrossRefGoogle Scholar
  134. Wagner, V.T., Matthysse, A.G.: Involvement of vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells.-J. Bacteriol. 174: 5999–6003, 1992.PubMedGoogle Scholar
  135. Wang, M.-B., Abbott, D.C., Upadhyaya, N.M., Jacobsen, J.V., Aterhouse, P.M.: Agrobacterium tumefaciens-mediated ransformation of an elite Australian barley cultivar with virus resistance and reporter genes.-Aust. J. Plant Physiol. 28: 149–156, 2001.Google Scholar
  136. Winans, S.C., Kerstetter, R.A., Nester, E.W.: Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens.-J. Bacteriol. 170: 4047–4054, 1988.PubMedGoogle Scholar
  137. Wroblewski, T., Tomczak, A., Michelmore, R.: Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis.-Plant Biotechnol. J. 3: 259–273, 2005.PubMedCrossRefGoogle Scholar
  138. Wu, H., Sparks, C., Amoah, B., Jones, H.D.: Factors influencing successful Agrobacterium-mediated genetic transformation of wheat.-Plant Cell Rep. 21: 659–668, 2003.PubMedGoogle Scholar
  139. Yanofsky, M., Montoya, A., Knauf, V., Lowe, B., Gordon, M., Nester, E.: Limited-host-range plasmid of Agrobacterium tumefaciens: molecular and genetic analyses of transferred DNA.-J. Bacteriol. 163: 341–348, 1985.PubMedGoogle Scholar
  140. Yu, C., Huang, S., Chen, C., Deng, Z., Ling, P., Gmitter, F.G.: Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange.-Plant Cell Tissue Organ Cult. 71: 147–155, 2002.CrossRefGoogle Scholar
  141. Zambre, M., Terryn, N., De Clercq, J., De Buck, S., Dillen, W., Montagu, M.V., Straeten, D.V.D., Angenon, G.: Light strongly promotes gene transfer from Agrobacterium.-Planta 216: 580–586, 2003.PubMedGoogle Scholar
  142. Zhang, G.N., Jia, J.F., Hao, J.G., Wang, X.R., He, T.: Plant regeneration from mesophyll protoplasts of Agrobacterium rhizogenes-transformed Astragalus melilotoides.-Biol. Plant. 52: 373–376, 2008.CrossRefGoogle Scholar
  143. Zhang, J., Boone, L., Kocz, R., Zhang, C., Binns, A.N., Lynn, D.G.: At the maize/Agrobacterium interface: natural factors limiting host transformation.-Chem. Biol. 7: 611–621, 2000.PubMedCrossRefGoogle Scholar
  144. Zhao, Z., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., Pierce, D.: Agrobacterium-mediated sorghum transformation.-Plant mol. Biol. 44: 789–798, 2000.PubMedCrossRefGoogle Scholar
  145. Zhu, Y., Nam, J., Carpita, N.C., Matthysse, A.G., Gelvin, S.B.: Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene.-Plant Physiol. 133: 1000–1010, 2003a.PubMedCrossRefGoogle Scholar
  146. Zhu, Y., Nam, J., Humara, J.M., Mysore, K., Lee, L.Y., Cao, H., Valentine, L., Li, J., Kaiser, AD., Kopecky, A.L., Hwang, H.H., Bhattacharjee, S., Rao, P.K., Tzfira, T., Rajagopal, J., Yi, H., Yadav, B.S., Crane, Y.M., Lin, K., Larcher, Y., Gelvin, M.J., Knue, M., Ramos, C., Zhao, X., Davis, S.J., Kim, S.I., Ranjith-Kumar, C.T., Choi, Y.J., Hallan, V.K., Chattopadhyay, S., Sui, X., Ziemienowicz, A., Matthysse, A.G., Citovsky, V., Hohn, B., Gelvin, S.B.: Identification of Arabidopsis rat mutants.-Plant Physiol. 132: 494–505, 2003b.PubMedCrossRefGoogle Scholar
  147. Zipfel, C., Felix, G.: Plants and animals: a different taste for microbes?-Curr. Opin. Plant Biol. 8: 353–360, 2005.PubMedCrossRefGoogle Scholar
  148. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., Felix, G.: Perception of the bacterial PAMP EFTu by the receptor EFR restricts Agrobacterium-mediated transformation.-Cell 125: 749–760, 2006.PubMedCrossRefGoogle Scholar
  149. Zupan, J., Muth, T.R., Draper, O., Zambryski, P.: The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights.-Plant J. 23: 11–28, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • O. Karami
    • 1
  • M. Esna-Ashari
    • 2
  • G. Karimi Kurdistani
    • 3
  • B. Aghavaisi
    • 1
  1. 1.Department of BiotechnologyBu-Ali Sina UniversityHamadanIran
  2. 2.Department of HorticultureBu-Ali Sina UniversityHamadanIran
  3. 3.Young Researchers ClopIslamic Azad UniversitySanandajIran

Personalised recommendations