Skip to main content
Log in

Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The effects of salinity on growth, leaf nutrient content, water relations, gas exchange parameters and chlorophyll fluorescence were studied in six-month-old seedlings of citrus (Citrus limonia Osbeck) and rooted cuttings of olive (Olea europaea L. cv. Arbequina). Citrus and olive were grown in a greenhouse and watered with half strength Hoagland’s solution plus 0 or 50 mM NaCl for citrus, or plus 0 or 100 mM NaCl for olive. Salinity increased Cl and Na+ content in leaves and roots in both species and reduced total plant dry mass, net photosynthetic rate and stomatal conductance. Decreased growth and gas exchange was apparently due to a toxic effect of Cl and/or Na+ and not due to osmotic stress since both species were able to osmotically adjust to maintain pressure potential higher than in non-salinized leaves. Internal CO2 concentration in the mesophyll was not reduced in either species. Salinity decreased leaf chlorophyll a content only in citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Chl:

chlorophyll

ci :

internal CO2 concentration

E:

leaf transpiration rate

Ewp :

whole plant transpiration rate

Fm :

maximum fluorescence of dark-acclimated leaves

F0 :

minimum fluorescence of dark-acclimated leaves

Fv/Fm :

maximum quantum efficiency of photosystem 2

gs :

stomatal conductance

LDM/area:

leaf dry mass to area ratio

PN :

net photosynthetic rate

S/R:

shoot to root ratio

TPDM:

total plant dry mass

WUE:

water use efficiency

Φ:

effective quantum yield

ΨP :

pressure potential

ΨS :

osmotic potential

ΨW :

water potential

References

  • Almansa, M.S., Hernandez, J.A., Jimenez, A., Botella, M.A., Sevilla, F.: Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstock-scion combinations.-Biol. Plant. 45: 545–549, 2002.

    Article  CAS  Google Scholar 

  • Benlloch, M., Arboleda, F., Barranco, D., Fernández-Escobar, R.: Response of young olive trees to sodium and boron excess in irrigation water.-HortScience 26: 867–870, 1991.

    CAS  Google Scholar 

  • Chartzoulakis, K., Loupassaki, M., Androulakis, I.: Comparative study on NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars.-Acta Hort. 586: 497–502, 2002a.

    Google Scholar 

  • Chartzoulakis, K., Loupassaki, M., Bertaki, M., Androulakis, I.: Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars.-Scientia Hort. 96: 235–247, 2002b.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis.-Annu. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Gadallah, M.A.A.: Effects of proline and glycinebetaine on Vicia faba responses to salt stress.-Biol. Plant. 42: 249–257, 1999.

    Article  CAS  Google Scholar 

  • García-Sánchez, F., Jifon, J., Carvajal, M., Syvertsen, J.P.: Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl accumulation in ’sunburst’ mandarin grafted on different rootstock.-Plant Sci. 162: 705–712, 2002a

    Article  Google Scholar 

  • García-Sánchez, F., Martínez, V., Jifon, J., Syvertsen, J.P., Grosser, J.W.: Salinity reduces growth, gas exchange, chlorophyll and nutrient concentrations in diploid Sour orange and related allotetraploid somatic hybrids.-J. hort. Sci. Biotechnol. 77: 379–386, 2002b.

    Google Scholar 

  • García-Sánchez, F., Syvertsen, J.P.: Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedling is affected by CO2 enrichment during growth.-J. amer. Soc. hort. Sci. 131: 24–31, 2006.

    Google Scholar 

  • Gebauer, J., El-Siddig, K., Salih, A.A., Ebert, G.: Tamarindus indica L seedlings are moderately salt tolerant when exposed to NaCl-induced salinity.-Scientia Hort. 103: 1–8, 2004.

    Article  CAS  Google Scholar 

  • Grattan, S.R., Grieve, C.M.: Mineral element acquisition and growth response of plants grown in saline environment.-Agr. Ecosyst. Environ. 38: 275–300, 1992.

    Article  CAS  Google Scholar 

  • Gucci, R., Tattini, M.: Salinity tolerance in olive.-Hort. Rev. 21: 177–214, 1997.

    CAS  Google Scholar 

  • Inskeep, W.P., Bloom, P.R.: Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80 % acetone.-Plant Physiol. 60: 606–608, 1985.

    Google Scholar 

  • Klein, I., Ben-Tal, Y., Lavee, S., De Malach, Y., David, I.: Saline irrigation of cv. Manzanillo and Uovo di Piccione trees.-Acta Hort. 356: 176–180, 1994.

    Google Scholar 

  • Lea-Cox, J.D., Syvertsen, J.P.: Salinity reduces water use and nitrate-N use efficiency of Citrus.-Ann. Bot. 72: 47–54, 1993.

    Article  CAS  Google Scholar 

  • Levy, Y., Syvertsen, J.P.: Irrigation water quality and salinity effects in citrus trees.-Hort. Rev. 30: 37–82, 2004.

    Google Scholar 

  • Loreto, F., Bongi, G.: Control of photosynthesis under salt stress in the olive.-In: Prodi, F., Rossi, F., Cristoferi, G. (ed.): Proceedings of the International Conference on Agrometeorology. Pp. 411–420. Fondazione Cesena Agricoltura, Cesena 1987.

    Google Scholar 

  • Maas, E.V., Hoffman, G.J.: Crop salt tolerance current assessment.-J. Irrig. 103: 115–134, 1977.

    Google Scholar 

  • Maas, E.V.: Salinity and citriculture.-Tree Physiol. 12: 195–216, 1993.

    PubMed  CAS  Google Scholar 

  • Maathuis, F.J.M., Amtmann, A.: K+ nutrition and Na+ toxicity The basis of cellular K+/Na+ ratios.-Ann. Bot. 84: 123–133, 1999.

    Article  CAS  Google Scholar 

  • Marín, L., Benlloch, M., Fernández-Escobar, R.: Screening of olive cultivars for salt tolerance.-Scientia Hort. 64: 113–116, 1995.

    Article  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide.-J. exp. Bot. 84: 659–668, 2000.

    Article  Google Scholar 

  • Parkhurst, D.F.: Diffusion of CO2 and other gases inside leaves.-New Phytol. 126: 449–479, 1994.

    Article  CAS  Google Scholar 

  • Scholander, P., Hammel, H., Bradstreet, E., Hemmingsen, E.: Sap pressure in vascular plants. Negative hydrostatic pressure can be measured in plants.-Science 148: 339–346, 1965.

    Article  PubMed  Google Scholar 

  • Sobrado, M.A.: Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity.-Photosynthetica 43: 217–221, 2005.

    Article  Google Scholar 

  • Storey, R., Walker, R.R.: Citrus and salinity.-Scientia Hort. 78: 39–81. 1999.

    Article  CAS  Google Scholar 

  • Storey, R.: Salt tolerance, ion relations and the effect of root medium on the response of Citrus to salinity.-Aust. J. Plant Physiol. 22: 101–114, 1995.

    CAS  Google Scholar 

  • Syvertsen, J.P.: Light acclimation in citrus leaves II CO2 assimilation and light, water, and nitrogen use efficiency.-J. amer. Soc. hort. Sci. 109: 812–817, 1984.

    Google Scholar 

  • Syvertsen, J.P., Lloyd, J., McConchie, C., Kriedemann, P.E., Farquhar, G.D.: On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves.-Plant Cell Environ. 18: 149–157, 1995.

    Article  Google Scholar 

  • Syvertsen, J.P., Yelenosky, G.: Salinity can enhance freeze tolerance of citrus rootstock seedlings by modifying growth, water relations and mineral nutrition.-J. amer. Soc. hort. Sci. 113: 889–893, 1988.

    Google Scholar 

  • Tattini, M., Bertoni, P., Caselli, S.: Genotypic responses of olive plants to sodium chloride.-J. Plant Nutr. 15: 1465–1485, 1992.

    Article  Google Scholar 

  • Tattini, M., Gucci, R., Coradeschi, M.A., Ponzio, C., Everard, J.D.: Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief.-Physiol. Plant. 95: 203–210, 1995.

    Article  CAS  Google Scholar 

  • Tattini, M.: Ionic relations of aeroponically-grown olive genotypes during salt stress.-Plant Soil 161: 251–256, 1994.

    Article  Google Scholar 

  • Van Kooten, O., Snell, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Walker, R.R., Blackmore, D.H., Sun, Q.: Carbon dioxide assimilation and foliar ion concentrations in leaves of lemon (Citrus limon L.) trees irrigated with NaCl or Na2SO4.-Aust. J. Plant. Physiol. 10: 265–277, 1993.

    Google Scholar 

  • Walker, R.R.: Sodium exclusion and potassium-sodium selectivity in salt treated trifoliate orange (Poncirus trifoliata) and Cleopatra mandarin (Citrus reticulata) plants.-Aust. J. Plant Physiol. 13: 293–303, 1986.

    Article  CAS  Google Scholar 

  • Zekri, M., Parsons, L.R.: Salinity tolerance of citrus rootstocks: effects of salt on root and leaf mineral concentration.-Plant Soil 147: 171–181, 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. García-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melgar, J.C., Syvertsen, J.P., Martínez, V. et al. Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biol Plant 52, 385–390 (2008). https://doi.org/10.1007/s10535-008-0081-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0081-9

Additional key words

Navigation