Biologia Plantarum

, 52:314 | Cite as

Glutathione and phytochelatin contents in tomato plants exposed to cadmium

  • W. Ben Ammar
  • C. Mediouni
  • B. Tray
  • M. H. Ghorbel
  • F. Jemal
Original Papers


The effect of cadmium on growth and contents of glutathione (GSH) and phytochelatins (PCs) were investigated in roots and leaves of tomato plants (Lycopersicon esculentum Mill. cv. 63/5 F1). The accumulation of Cd increased with external Cd concentrations and was considerably higher in roots than in leaves. Dry mass production decreased under Cd treatment especially in leaves. In both roots and leaves, exposure to Cd caused an appreciable decline in GSH contents and increase in PCs synthesis proportional to Cd concentrations in the growth medium. At the same Cd concentration, PCs production was higher in roots than in leaves. The implication of glutathione in PC synthesis was strongly suggested by the use of buthionine sulfoximine (BSO). The major fraction of Cd accumulated by tomato roots was in the form of a Cd-PCs complex.

Additional key words

buthionine sulfoximine complex Cd-PC Lycopersicon esculentum 



buthionine sulfoximine




nonprotein thiol




thiobarbituric acid reactive substances


  1. Agrawal, V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica.-Biol. Plant. 50: 307–310, 2006.CrossRefGoogle Scholar
  2. Alia, K.V.S.K., Prasad, P., Pardha Saradhi, P.: Effect of zinc on free radicals and proline in Brassica and Cajanus.-Phytochemistry 42: 45–47, 1995.CrossRefGoogle Scholar
  3. Anderson, M.E.: Determination of glutathione and glutathione disulfide in biological samples.-Methods Enzymol. 113: 548–555, 1985.PubMedCrossRefGoogle Scholar
  4. Arbona, V., Flors, V., Garcia-Agustin, P., Gomez-Cadenas, A.: Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, salt-sensitive citrus rootstock, to different levels of salinity.-Plant Cell Physiol. 44: 388–394, 2003.PubMedCrossRefGoogle Scholar
  5. Ben Ammar, W., Nouairi, I., Tray, B., Zarrouk, M., Jemal, F., Ghorbal, M.H.: Effets du cadmium sur l’accumulation ionique et les teneurs en lipides dans les feuilles de tomate (Lycopersicon esculentum).-J. Soc. Biol. 199: 157–163, 2005.PubMedCrossRefGoogle Scholar
  6. Buege, A.J., Aust, S.D.: Microsomal lipid peroxidation,-Method Enzymol. 52: 302–310, 1972.CrossRefGoogle Scholar
  7. Clemens, S.: Molecular mechanisms of plant metal tolerance and homeostasis.-Plant 212: 475–486, 2001.CrossRefGoogle Scholar
  8. Clemens, S.: Evolution and function of phytochelatin synthase.-J. Plant Physiol. 163: 319–332, 2006.PubMedCrossRefGoogle Scholar
  9. Cobbett, C.S.: Phytochelatin biosynthesis and function in heavy-metal detoxification.-Curr. Opin. Plant Biol. 3: 211–216, 2000.PubMedGoogle Scholar
  10. De Pinto, M.C., Tommasi, F., De Gara, L.: Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco bright yellow (BY-2 line).-Plant Physiol. Biochem. 38: 541–550, 2000.CrossRefGoogle Scholar
  11. De Vos, C.H., Marjolein, R.V.J., Vooijs, R., Schat, H.: Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus.-Plant Physiol. 98: 853–858, 1992.PubMedCrossRefGoogle Scholar
  12. Drazić, G., Mihailović, N., Lojić, M.: Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid.-Biol. Plant. 50: 239–244, 2006.CrossRefGoogle Scholar
  13. Ellman, G.L.: Tissue sulfhydryl groups.-Arch. Biochem. Biophys. 82: 70–77, 1959.PubMedCrossRefGoogle Scholar
  14. Gouia, H., Suzuki, A., Brultfert, J., Ghorbal, M.H.: Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings.-J. Plant Physiol. 160: 367–376, 2003.PubMedCrossRefGoogle Scholar
  15. Grill, E., Winnacker, E., Zenk, M.H.: Phytochelatins the principal heavy-metal complexing peptides of higher plants.-Science 230: 674–676, 1985.PubMedCrossRefGoogle Scholar
  16. Ha, S.B., Smith, A.P., Howden, R., Dietrich, W.H., Bugg, S., O’Connell, M.J., Goldsbrough, P.B., Cobbet, C.S.: Phytochelatin synthase genes from Arabidopsis and yeast Schizosaccharomyces pombe.-Plant Cell. 11: 1153–1164, 1999.PubMedCrossRefGoogle Scholar
  17. Hall J.L.: Cellular mechanisms for heavy metal detoxification and tolerance.-J. exp. Bot. 53: 1–11. 2002.PubMedCrossRefGoogle Scholar
  18. Inouhe, M.: Phytochelatins.-Braz. J. Plant Physiol. 17: 65–78, 2005.CrossRefGoogle Scholar
  19. Jemal, F., Didierjean, L., Ghrir, R., Ghorbal, M.H., Burkard, G.: Characterization of cadmium binding peptides from pepper (Capsicum annuum).-Plant Sci. 137: 143–154, 1998.CrossRefGoogle Scholar
  20. Krupa, Z.., Öquist, G., Huner, N.P.A.: The effects of cadmium on photosynthesis of Phaseolus vulgaris. A fluorescence analysis.-Physiol. Plant. 88: 626–630, 1993.CrossRefGoogle Scholar
  21. Li, Y., Parkash, O.D., Laura, C., David, L., Alice, C., Julian, I.S., Rebecca, S.B., Richard, B.M.: Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.-Plant Cell Physiol. 45: 1787–1797, 2004.PubMedCrossRefGoogle Scholar
  22. Meneguzzo, S., Navari-Izzo, F., Izzo, R.: Antioxidant responses of shoots and roots of wheat to increasing NaCl concentrations.-J. Plant. Physiol. 155: 274–280, 1999.Google Scholar
  23. Nocito, F., Pirovano, L., Cocucci, M., Sacchi, A.: Cadmium-induced sulfate uptake in maize roots.-Plant Physiol. 129: 1872–1879, 2002.PubMedCrossRefGoogle Scholar
  24. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.-Annu Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.PubMedCrossRefGoogle Scholar
  25. Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling.-J. exp. Bot. 53: 1283–1304, 2002.PubMedCrossRefGoogle Scholar
  26. Nouairi, I., Ben Ammar, W., Ben Youssef, N., Ben Miled Daoud, D., Ghorbal, M.H., Zarrouk, M.: Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves.-Plant Sci. 170: 511–519, 2005.CrossRefGoogle Scholar
  27. Pietrini, F., Iannelli, M.A., Pasqualini, S., Massacci, A.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis.-Plant Physiol. 133: 829–837, 2003.PubMedCrossRefGoogle Scholar
  28. Rauser, W.E.: Phytochelatins and related peptides. Structure, biosynthesis and function.-Plant Physiol. 109: 1141–1149, 1995.PubMedCrossRefGoogle Scholar
  29. Rea, P.A., Li, Z.S., Lu, Y.P., Drozodowicz, Y.M., Martinoia, E.: From vacuolar GS-X pumps to multispecific ABC transporters.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 727–760, 1998.PubMedCrossRefGoogle Scholar
  30. Rennenberg, H.: Glutathione metabolism and possible biological roles in higher plants.-Phytochemistry 21: 2771–2781, 1982.CrossRefGoogle Scholar
  31. Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium induced changes in the growth and oxidative metabolism of pea plants.-J. exp. Bot. 152: 2115–2126, 2001.Google Scholar
  32. Scarano, G., Morelli, E.: Characterization of cadmium and lead-phytochelatins complexes formed in marine microalgae in response to metal exposure.-BioMetals 15: 145–151, 2002.PubMedCrossRefGoogle Scholar
  33. Scebba, F., Arduini, I., Ercoli, L., Sebastiani, L.: Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis.-Biol. Plant. 50: 688–692, 2006.CrossRefGoogle Scholar
  34. Xiang, C., Werner, B.L., Christensen, E.M., Oliver, D.J.: The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels.-Plant Physiol. 126: 564–574, 2001.PubMedCrossRefGoogle Scholar
  35. Yu, C..W., Murphy, T.M., Sung, W.W., Lin, C.H.: H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean.-Funct. Plant Biol. 29: 1081–1087, 2002.CrossRefGoogle Scholar
  36. Yurekli, F., Unyayar, A., Porgali, Z.B., Mazmanci, M.A.: Effects of cadmium exposure on phytochelatin and the synthesis of abscisic acid in Funalia trogii.-Eng. Life Sci. 4: 478–380, 2004.CrossRefGoogle Scholar
  37. Zhu, O.Y.L., Pilon-Smits, E.A.H., Jouanin, l., Terry, N.: Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance.-Plant Physiol. 119: 73–79, 1999.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2008

Authors and Affiliations

  • W. Ben Ammar
    • 1
  • C. Mediouni
    • 1
  • B. Tray
    • 1
  • M. H. Ghorbel
    • 1
  • F. Jemal
    • 1
  1. 1.Faculté des Sciences de TunisCampus UniversitaireTunisTunisia

Personalised recommendations