Skip to main content
Log in

Metal hyperaccumulation and bioremediation

  • Review
  • Published:
Biologia Plantarum

Abstract

The phytoremediation is an environment friendly, green technology that is cost effective and energetically inexpensive. Metal hyperaccumulator plants are used to remove metal from terrestrial as well as aquatic ecosystems. The technique makes use of the intrinsic capacity of plants to accumulate metal and transport them to shoots, ability to form phytochelatins in roots and sequester the metal ions. Harbouring the genes that are considered as signatures for the tolerance and hyperaccumulation from identified hyperaccumulator plant species into the transgenic plants provide a platform to develop the technology with the help of genetic engineering. This would result in transgenics that may have large biomass and fast growth a quality essential for removal of metal from soil quickly and in large quantities. Despite so much of a potential, the progress in the field of developing transgenic phytoremediator plant species is rather slow. This can be attributed to the lack of our understanding of complex interactions in the soil and indigenous mechanisms in the plants that allow metal translocation, accumulation and removal from a site. The review focuses on the work carried out in the field of metal phytoremediation from contaminated soil. The paper concludes with an assessment of the current status of technology development and its future prospects with emphasis on a combinatorial approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC deaminase:

1-aminocyclopropane-1-carboxylicaciddeaminase

d.m.:

dry mass

EDTA:

ethylenediamine-tetraacetic acid

MT:

metallothionein

PC:

phytochelatin

References

  • Agrawal, V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica.-Biol. Plant. 50: 307–310, 2006.

    CAS  Google Scholar 

  • Alkorta, I., Hernandez-Allica, J., Becerril, J.M., Amezaga, I., Albizu, I., Garbisu, I.: Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic.-Environ. Sci. Biotechnol. 3: 71–90, 2004.

    CAS  Google Scholar 

  • Al-Najar, H., Kaschl, A., Schulz, R., Romheld, V.: Effects of thallium fractions in the soil and pollution origin in thallium uptake by hyperaccumulator plants: a key factor for assessment of phytoextraction.-Int. J. Phytorem. 7: 55–67, 2005.

    CAS  Google Scholar 

  • Alshawabkeh, A.N., Bricka, R.M.: Basics and applications of electrokinetic remediation.-In: Pessarakli, M. (ed.): Remediation Engineering of Contaminated Soils. Pp. 95–111. Marcel Dekker, New York 2000.

    Google Scholar 

  • Anderson, C.W.N., Brooks, R.R., Steward, R.B., Simack, R.: Harvesting a crop of gold in plants.-Nature 395: 553–554, 1998.

    CAS  Google Scholar 

  • Anderson, C.W.N., Brooks, R.R., Chiarucci, A., Lacoste, C.J., Leblanc, M., Robinson, B.H., Simack, R., Steward, R.B.: Phytomining for nickel, thallium and gold.-J. Geochem. Explor. 67: 407–415, 1999.

    CAS  Google Scholar 

  • Anton, A., Grosse, C., Reissmann, J., Prebyl, T., Nies, D.H.: CxcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp strain CH34.-J. Bacteriol. 181: 6876–6881, 1999.

    PubMed  CAS  Google Scholar 

  • Antosiewicz, D.M., Hennig, J.: Over-expression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity.-Environ. Pollut. 129: 237–245, 2004.

    PubMed  CAS  Google Scholar 

  • Appenroth, K.J., Bischoff, M., Gabrys, H., Stoeckel, J., Walckzak, T.: Kinetics of chromium (V) formation and reduction in fronds of duckweed Spirodela polyrhiza — a low frequency EPR study.-J. Inorg. Biochem. 78: 235–242, 2000.

    PubMed  CAS  Google Scholar 

  • Archer, M.J.G., Caldwell, R.A.: Response of six Australian plants species to heavy metal contamination at an abandoned mine site.-Water Air Soil Pollut. 157: 257–267, 2004.

    CAS  Google Scholar 

  • Baker, A.J.M., Brooks, R.R.: Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry.-Biorecovery 1: 81–126, 1989.

    CAS  Google Scholar 

  • Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.A.C.: Metal Hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediaton of metal polluted soil.-In: Terry, N., Baneulos, G. (ed.): Phytoremediation of Contaminated Soil and Water. Pp. 85–107. Lewis Publications, Boca Raton 2000.

    Google Scholar 

  • Baker, A.J.M., Reves, R.D., Hajar, A.S.M.: Heavy metal accumulation and tolerance in British population of the metallophytes Thlaspi caerulescens J&C Presl. (Brassicaceae).-New Phytol. 127: 61–68, 1994.

    CAS  Google Scholar 

  • Baker, A.J.M., Walker, P.L.: Ecophysiology of metal uptake by tolerant plants.-In: Shaw, A.J. (ed.): Heavy Metal Tolerance in Plants: Evolutionary Aspects. Pp. 155–177. CRC Press, Boca Raton 1990.

    Google Scholar 

  • Bennett, L.E., Burkhead, J.L., Hale, K.L., Terry, N., Pilon, M., Pilon-Smits, E.A.H.: Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings.-J. Environ. Qual. 32: 432–440, 2003.

    PubMed  CAS  Google Scholar 

  • Bennicelli, R., Steniewska, Z., Banach, A., Szajnocha, K., Ostrowski, J.: The ability of Azolla caroliniana to remove heavy metals {Hg (II), Cr (III), Cr (VI)} from municipal waste waters.-Plant Physiol. 133: 14–15, 2003.

    Google Scholar 

  • Berken, A., Mulholland, M.M., LeDuc, D.L., Terry, N.: Genetic engineering of plants to enhance selenium phytoremediation.-Crit. Rev. Plant Sci. 21: 567–582, 2002.

    CAS  Google Scholar 

  • Bernhard, W.R., Kagi, H.R.: Purification and characterization of a typical cadmium-binding peptides from Zea mays.-Experientia. 52(Suppl.): 309–315, 1987.

    CAS  Google Scholar 

  • Bizily, S.P., Rugh, C.L., Summers, A.O., Meagher, R.B.: Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials.-Proc. nat. Acad. Sci. USA 96: 6808–6813, 1999.

    PubMed  CAS  Google Scholar 

  • Black, H.: Phytoremediation: a growing field with some concerns.-Scientist 13: 1–3, 1999.

    Google Scholar 

  • Blaylock, M.J., Salt, D.E., Duschenkov, S., Zakarova, O., Gussmann, C., Kapulnik, Y., Ensley, B.D., Raskin, I.: Enhanced accumulation of lead in Indian mustard by soil applied chelating agents.-Environ. Sci. Technol. 31: 860–865, 1997.

    Google Scholar 

  • Blaylock, M.J.: Field demonstration of phytoremediation of lead contaminated soils.-In: Terry, N., Banuelos, G. (ed.): Phytoremediation of Contaminated Soil and Water. Pp. 1–12. Lewis Publications, Boca Raton 2000.

    Google Scholar 

  • Bondada, B.R., Ma, L.Q.: Tolerance of heavy metals in vascular plants: arsenic hyperaccumulations in Chinese brake fern (Pteris vittata).-In: Chandra, S., Shrivastava, M. (ed.): Pteridology in the New Millennium. Pp. 397–420. Kluwer Academic Publishers, Dordecht-Boston-London 2003.

    Google Scholar 

  • Boonyapookana, B., Parkplan, P., Techapinyawat, S., DeLaune, R.D., Jugsujinda, A.: Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabaccum), and vetiver (Vetiveria zizanioides).-J. environ. Sci. Heal. A. 40: 117–137, 2005.

    Google Scholar 

  • Boyajian, G., Carriera, L.H.: Phytoremediation: a clean transition from laboratory to marketplace.-Natur. Biotechnol. 15: 127–128, 1997.

    CAS  Google Scholar 

  • Brewer, E.P., Saunders, A.J., Angle, J.S., Chaney, R.L., Macintosh, M.S.: Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus.-Theor. appl. Genet. 99: 761–771, 1999.

    CAS  Google Scholar 

  • Broadhurst, C.L., Chaney, R.L., Angle, J.S., Maugel, T.K., Erbe, E.F., Murphy, C.A.: Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes.-Environ. Sci. Technol. 38: 5797–5802, 2004.

    PubMed  CAS  Google Scholar 

  • Brooks, R.R.: Copper and cobalt uptake in Hauminiastrum species.-Plant Soil 48: 541–544, 1977.

    CAS  Google Scholar 

  • Brown S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M.: Phytoremedaition potential of Thalspi caerulescens for zinc and cadmium contaminated soil.-J. environ. Qual. 23: 1151–1157, 1994.

    CAS  Google Scholar 

  • Caille, N., Swanwick, S., Zhao, F.J., McGrath, S.P.: Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilization.-Environ. Pollut. 132: 113–120, 2004.

    PubMed  CAS  Google Scholar 

  • Celliar, M., Prive, G., Belouchi, A., Kwan, T., Rodriguez, V., Chia, W., Gros, P.: Nramp defines a family of membrane proteins.-Proc. nat. Acad. Sci. USA 91: 10089–10093, 1995.

    Google Scholar 

  • Chandra Sekhar, K., Kamala, C.T., Chary, N.S., Balaram, V., Garcia, G.: Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils.-Chemosphere 58: 507–514, 2005.

    PubMed  CAS  Google Scholar 

  • Chaney, R.L.: Plant uptake of inorganic waste constitutes.-In: Parr, J.F., Marsh, P.B., Kla, J.M. (ed.): Land Treatment of Hazardous Wastes. Pp. 50–76. Park Ridge Noyes Data Corp., London 1983.

    Google Scholar 

  • Chaney, R.L.: Zinc phytotoxicity.-In: Robson, A.D. (ed.) Zinc in Soil and Plants. Pp. 135–158. Kluwer Academic Publisher, Dordrecht-Amsterdam 1993.

    Google Scholar 

  • Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Angle, J.S., Baker, A.J.M.: Phytoremediation of soil metals.-Curr. Opin. Biotechnol. 8: 279–284, 1997.

    PubMed  CAS  Google Scholar 

  • Che, D.S., Meagher, R.B., Heaton, A.C.P., Lima, A., Rugh, C.L., Merkle, S.A.: Expression of mercuric ion reductase in eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance.-J. Plant Biotechnol. 1: 311–319, 2003.

    CAS  Google Scholar 

  • Chen, J., Huang, J.W., Casper, T., Cunningham, S.D.: Arabidopsis as a model system for studying lead accumulation and tolerance in plants.-In: Kruger, E.L. (ed.): Phytoremediation of Soil and Water Contaminants. Pp 264–273. American Chemical Society, Washington 1997.

    Google Scholar 

  • Chen, J., Zhao, J., Goldsbrough, P.B.: Characterization of phytochelatin-synthase from tomato.-Physiol. Plant. 101: 165–172, 1997.

    CAS  Google Scholar 

  • Clarkson, D.T.: The uptake and translocation of manganese by plant roots.-In: Graham, R.D., Hannam, R.J., Uren, N.C. (ed.): Manganese in Soil and Plants. Pp. 101–111. Kluwer Academic Publisher, Dordrecht 1988.

    Google Scholar 

  • Clemens, S.: Molecular mechanisms of plant metal hoemostatsis.-Planta. 212: 475–486, 2001.

    PubMed  CAS  Google Scholar 

  • Clemens, S., Antonsiewz, D.M., Ward, J.M., Schachtman, D.P., Schroder, J.J.: The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.-Proc. nat. Sci. USA 95: 12043–12048, 1998.

    CAS  Google Scholar 

  • Clemens, S., Kim, E., Newmann, J, Schroeder, D.: Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.-EMBO J. 18: 3325–3333, 1999.

    PubMed  CAS  Google Scholar 

  • Clemens, S., Palmgren, M.G.. Kramer, U.: A long way ahead: understanding and engineering plant metal accumulation.-Trends Plant Sci. 7: 309–314, 2002.

    PubMed  CAS  Google Scholar 

  • Cobbet, C., Goldsbrough, P.: Phytochelatins and metallothioneins: role in heavy metal detoxification and homeostasis.-Annu. Rev. Plant Biol. 53: 159–182, 2002.

    Google Scholar 

  • Conklin, D.S., MacMasters, J.A., Culbertson, M.R., Kung, C.: COT1 genes involved in cobalt accumulation in Saccharomyces cerevisiae.-Mol. cell. Biol. 12: 3678–3688, 1992.

    PubMed  CAS  Google Scholar 

  • Cooper, E.M., Sims, J.T., Cunningham, S.D., Huang, J.W., Berti, W.R.: Chelate-assisted phytoextraction of lead from contaminated soils.-J. environ. Qual. 28: 1709–1719, 1999.

    CAS  Google Scholar 

  • Cunningham, S.D., Berti, W.R.: Remediation of contaminated soils with green plants: An overview.-In Vitro cell. dev. Biol. Plant 29: 207–212, 1993.

    Google Scholar 

  • Cunningham, S.D., Berti, W.R., Huang, J.W.: Phytoremediation of contaminated soils.-TIBTECH 13: 393–397, 1995.

    CAS  Google Scholar 

  • Curie C., Panaviene Z., Loulerguech C., Delaporta S.L., Briat J. F., Walker E.L.: Maize yellow stripe encodes a membrane protein directly involved in Fe (III) uptake.-Nature 409: 346–349, 2001.

    PubMed  CAS  Google Scholar 

  • Dahmani-Muller, Van Oort, F., Gelie, B., Balabane, M.: Strategies of heavy metal uptake by three plant species growing near a metal smelter.-Environ. Pollut. 109: 231–238, 2000.

    PubMed  CAS  Google Scholar 

  • De Knecht, J.A., Van Baren, N., Ten Bookum, W.M., Wong, F., Sang, H.W., Koevoet, P.L.M., Schat, H., Verkleij, J.A.C.: Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris.-Plant Sci. 106: 9–18, 1995.

    Google Scholar 

  • Delhaize, E., Randall, P.J., Wallace, P.A., Pinkerton, A.: Screening Arabidopsis for mutants in mineral nutrition.-Plant Soil 156: 134–141, 1993.

    Google Scholar 

  • Delhaize, E., Ryan, P.R.: Aluminium toxicity and and tolerance in plants.-Plant Physiol. 107: 315–321, 1995.

    PubMed  CAS  Google Scholar 

  • Dhankher, O.P., Li, Y., Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Sashti, N.A., Meagher, R.B.: Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression.-Natur. Biotechnol. 20: 1140–1145, 2002.

    CAS  Google Scholar 

  • Dietz, K.J, Baier, M., Kramer, U.: Free radicals and reactive oxygen species are mediators of heavy metal toxicity in plants.-In: Prasad, M.N.V., Hagemmeyer, J. (ed.): Heavy Metal Stress in Plants: from Molecules to Ecosystem. Pp. 79–97. Springer-Verlag, Berlin 1999.

    Google Scholar 

  • Dondon, M.G., De Vathaire, F., Quenel, P., Frery, N.: Cancer mortality during the 1968–1994 period in a mining area in France.-Eur. J. Cancer Prev. 14: 297–301, 2005.

    PubMed  Google Scholar 

  • Dražić, G., Mihalović, N., Lojić, M.: Cadmium concentration in Medicago sativa seedlings treated with salicylic acid.-Biol. Plant. 50: 239–244, 2006.

    Google Scholar 

  • Ducic, T., Polle, A.: Transport and detoxification of manganese and copper in plants.-Braz. J. Plant Physiol. 17: 103–112, 2005.

    CAS  Google Scholar 

  • Eide, D., Broderius, M., Fett, J., Guerinot, M.L.: A novel iron-regulated metal transporter from plants identified by functional expression in yeast.-Proc. nat. Acad. Sci. USA 93: 5624–5628, 1996.

    PubMed  CAS  Google Scholar 

  • Evans, K.M., Gatehouse, J.A., Lindsay, W.P., Shi, J., Tommey, A.M., Robinson, N.J.: Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function.-Plant mol. Biol. 20: 1019–1028, 1992.

    PubMed  CAS  Google Scholar 

  • Fox, T.C., Guerinot, M.L.: Molecular biology of cation transport in plants.-Annu. Rev. Plant Physiol. Plant. mol. Biol. 49: 669–696, 1998.

    PubMed  CAS  Google Scholar 

  • Fu, D., Beeler, T.J., Dunn, T.M.: Sequence, mapping and destruction of CCC2: a gene that cross complements the Ca2+-sensitive phenotype of csg1 mutant and encodes a P-type ATPase belonging to the Cu2+-ATPase subfamily.-Yeast 11: 283–292, 1995.

    PubMed  CAS  Google Scholar 

  • Gardea-Torresday, J.L., De la Rosa, G., Peralta-Videa, J.R., Montes, M., Cruz-Jiminez, G., Cano-Aguilera: Differential uptake and transport of trivalent and hexavalent chromium by tumble wed (Salsola kali).-Arch. Environ. Contam. Toxicol. 48: 225–232, 2005.

    Google Scholar 

  • Gekeler, W., Grill, E., Winnacker, E-L., Zenk, M.H.: Survey of the plant kingdom for the ability to bind metals through phytochelatins.-Z. Naturforsch. 44: 361–369, 1989.

    CAS  Google Scholar 

  • Gleba, D., Borisjuk, N.V., Borisjuk, L.G., Kneer, R., Poulev, A., Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y.Y., Raskin, I.: Use of plant roots for phytoremediation and molecular farming.-Proc. nat. Acad. Sci. USA 96: 5973–5977, 1999.

    PubMed  CAS  Google Scholar 

  • Glerum, D.M., Shtanko, A., Tzagoloff, A.: Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase.-J. biol. Chem. 271: 14504–14509, 1996.

    PubMed  CAS  Google Scholar 

  • Goldbold, D.L., Horst, W.J., Collins, J.C., Thumann, D.A., Marschner, H.: Accumulation of zinc and organic acids in the roots of zinc-tolerant and non-tolerant ecotypes of Deschampia caespitosa.-J. Plant. Physiol. 116: 59–69, 1984.

    Google Scholar 

  • Gratão, P.L., Prasad, M.N.V., Cardoso, P.F., Lea, P.J., Azevedo, R.A.: Phytoremediation: green technology for the clean up of toxic metals in the environment.-Braz. J. Plant Physiol. 17: 53–64, 2005.

    Google Scholar 

  • Grichko, V.P., Filby, B., Glick, B.R.: Increased ability of transgenic plants expressing the enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn.-J. Biotechnol. 81: 45–53, 2000.

    PubMed  CAS  Google Scholar 

  • Grill, E., Loffler, S., Winnacker, E.-L., Zenk, M.H.: Phytochelatins, the heavy metal binding proteins are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).-Proc. nat. Acad. Sci. USA 86: 6838–6842, 1989.

    PubMed  CAS  Google Scholar 

  • Grill, E., Winnacker, E.-L., Zenk, M.H.: Homo-phytochelatins as heavy metal-binding peptides of homoglutathione-containing Fabales.-FEBS Lett. 205: 47–50, 1986a.

    CAS  Google Scholar 

  • Grill, E., Winnacker, E.-L., Zenk, M.H.: Synthesis of seven homologous phytochelatins in metal-exposed Schizosaccharomyces cerevisiae cells.-FEBS Lett. 197: 115–120, 1986b.

    CAS  Google Scholar 

  • Grill, E., Winnacker, E.-L., Zenk, M.H.: Phytochelatins the metal binding peptides from plants are functionally analogous to metallothioneins.-Proc. nat. Acad. Sci. USA 84: 439–443, 1987.

    PubMed  CAS  Google Scholar 

  • Grotz, N., Fox, T., Cannoly, E., Park, W., Guerinot, M.L., Eide, D.: Identification of a family of zinc transporter from Arabidopsis that respond to zinc deficiency.-Proc. nat. Acad. Sci. USA 86: 6838–6842, 1988.

    Google Scholar 

  • Guerinot, M.L., Eide, D.: Zeroing in on zinc uptake in yeast and plants.-Curr. Opin. Plant Biol. 2: 244–249, 1999.

    PubMed  CAS  Google Scholar 

  • Hamer, D.H.: Metallothioneins.-Annu. Rev. Biochem. 55: 913–951, 1986.

    PubMed  CAS  Google Scholar 

  • Hartley-Whitaker, J., Woods, C., Meharg, A.A.: Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus?-New Phytol. 155: 219–225. 2002

    CAS  Google Scholar 

  • Hasegawa, I., Terada, E., Sunairi, M., Wakita, H., Schimachi, F., Nakajima, M., Yazaki, J.: Genetic improvement in heavy metal tolerance in plants by transfer of yeast metalllothionein gene (CUP1).-Plant Soil 196: 277–281, 1997.

    CAS  Google Scholar 

  • Hattori, J., Labbé, H., Miki, B.L.: Construction and expression of a metallothionein-γ-glucuronidase gene fusion.-Genome 37: 508–512, 1994.

    PubMed  CAS  Google Scholar 

  • Hayashi, Y., Nakagawa, C.W., Mutoh, N., Isobe, M., Goto, T.: Two pathways in the biosynthesis of cadystins (γ EC)nG in the cell free system of fission yeast.-Biochem. Cell Biol. 69: 115–121, 1991.

    PubMed  CAS  Google Scholar 

  • Hirschi, K.D., Zhen, R.G., Cunningham, K.W., Rea, P.A., Fink, G.R.: CAX1 and H+/Ca2+ antiporter from Arabidopsis.-Proc. nat. Acad. Sci. USA 93: 8782–8786, 1996.

    PubMed  CAS  Google Scholar 

  • Hirschi, E.D., Korenkey, V.D., Wilganewski, N.I., Wagner, G.I.: Expression of Arabidopsis CAX2 in tobacco, altered metal accumulation and increased manganese tolerance.-Plant Physiol. 124: 128–133, 2000.

    Google Scholar 

  • Howden, R., Goldsborough, P.B., Anderson, C.R., Cobbett, C.S.: Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.-Plant Physiol. 107: 1059–1066, 1995.

    PubMed  CAS  Google Scholar 

  • Huang, J.W., Blaylock, M.J., Kapulnik, Y., Ensley, B.D.: Phytoremediation of Uranium-contaminated soils: Role of organic acids in triggering Uranium hyperaccumulation in plants.-Environ. Sci. Technol. 32: 2004–2008, 1998.

    CAS  Google Scholar 

  • Huang, J.W., Chen, J.W., Berti, W.R., Cunningham, S.D.: Phytoremediation of lead contaminated soil: role of synthetic chelates in lead phytoextraction.-Environ. Sci. Technol. 31: 800–805, 1997.

    CAS  Google Scholar 

  • Huang, J.W., Cunningham, S.D.: Lead phytoextraction: species variation in lead uptake and translocation.-New Phytol. 134: 75–84, 1996.

    CAS  Google Scholar 

  • Jaffre, T., Brooks, R.R., Lee, J., Reeves, R.D.: Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia.-Science 193: 579–580, 1976.

    PubMed  CAS  Google Scholar 

  • Kamizono, A., Nishizawa, M., Teranishi, Y., Murata, K., Kimura, A.: Identification of a gene conferring resistance to zinc and cadmium in Saccharomyces cerevisiae.-Mol. gen. Genet. 219: 161–167, 1989.

    PubMed  CAS  Google Scholar 

  • Kamnev, A.A., Van der Lelie, D.: Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation.-Biosci. Rep. 20: 239–258, 2000.

    PubMed  CAS  Google Scholar 

  • Kawashima, C.G., Noji, M., Nakamura, M., Ogra, Y., Suzuki, K.T., Saito, K.: Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase.-Biotech. Lett. 26: 153–157, 2004.

    CAS  Google Scholar 

  • Klapheck, S., Crost, B., Stark, J., Zimmermann, H.: γ-Glutamylcysteinylserine: a new homologue of glutathione in plants of the family Poaceae.-Bot. Acta 105: 174–179, 1992.

    CAS  Google Scholar 

  • Klapheck, S., Fleigner, W., Zimmer, I.: Hydroxymethyl phytochelatins [(γ-glutamylcystine)n serine] are metal induced peptides of Poaceae.-Plant Physiol. 104: 1325–1332, 1994.

    PubMed  CAS  Google Scholar 

  • Klapheck, S., Schlunz, S., Bergmann, L.: Phytochelatins and homo-phytochelatins in Pisum sativum L.-Plant Physiol. 107: 515–521, 1995.

    PubMed  CAS  Google Scholar 

  • Kneer, R., Zenk, M.H.: Phytochelatins protect plant enzymes from heavy metal poisoning.-Phytochemistry 31: 2663–2667, 1992.

    CAS  Google Scholar 

  • Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L., Pakrasi, H.B.: The IRT1 protein from Arabidopsis thaliana, is a metal transporter with a broad substrate range.-Plant mol. Biol. 40: 37–44, 1999.

    PubMed  CAS  Google Scholar 

  • Kramer, U.: Phytoremediation: novel approaches to cleaning up polluted soils.-Curr. Opin. Biotechnol. 16: 133–141, 2005.

    PubMed  Google Scholar 

  • Kramer, U., Cotter-Howells, J.D., Charnock, J.N., Baker, A.J.M., Smith, A.C.: Free histidine as a metal chelator in plants that accumulate nickel.-Nature 379: 635–638, 1996.

    CAS  Google Scholar 

  • Lasat, M.M.: Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues.-J. Hazard. Substr. Res. 2: 1–25, 2000.

    Google Scholar 

  • Lasat, M.M.: Phytoextraction of toxic metals: a review of biological mechanisms.-J. Environ. Qual. 31: 109–120, 2002.

    PubMed  CAS  Google Scholar 

  • Lasat, M.M., Baker, A.J.M., Kochain, L.V.: Altered zinc compartmentation in the root symplasms and stimulated ainc absorption in the leaves and the mechanism involved in Thalspi caerulescens.-Plant Physiol. 118: 875–883, 1998.

    PubMed  CAS  Google Scholar 

  • LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., Abdel Samie, M., Chiang, C.Y., Tagmount, A., DeSouza, M., Neuhierl, B., Bock, A., Caruso, J., Terry, N.: Over-expression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation.-Plant Physiol. 135: 377–383, 2004.

    PubMed  CAS  Google Scholar 

  • Lee, J., Bae, H., Jeong, J., Lee, J.Y., Yang, Y.Y., Hwang, I., Martinoia, E., Lee, Y.: Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decrease uptake of heavy metals.-Plant Physiol. 133: 589–596, 2003a.

    PubMed  CAS  Google Scholar 

  • Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B., Korban, S.S.: Over-expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress.-Plant Physiol. 131: 656–663, 2003b.

    PubMed  CAS  Google Scholar 

  • Li, L., Kaplan, J.: Defect in yeast iron transport system results in increased metal hypersensitivity because of the increased expression of transporter with broad transition metal specificity.-J. biol. Chem. 271: 22181–22187, 1998.

    Google Scholar 

  • Lombi, E., Zhao, F.J., Dunham, S.J., McGrath, S.P.: Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction.-J. Environ. Qual. 30: 1919–1926, 2001.

    PubMed  CAS  Google Scholar 

  • Lopez-Millan, A.F., Ellis, D.R., Grusak, M.A.: Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula.-Plant mol. Biol. 54: 583–596, 2004.

    PubMed  CAS  Google Scholar 

  • Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kenelly, E.D.: A fern that hyperaccumulates arsenic.-Nature 409: 579–582, 2001.

    PubMed  CAS  Google Scholar 

  • Maiti, I.B., Hunt, A.G., Wagner, G.J., Yeargan, R., Hunt, A.G.: Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco.-Plant Sci. 76: 99–107, 1991.

    CAS  Google Scholar 

  • Maitani, T., Kubota, H., Sato, K., Yamada, T.: The composition of metal bound to class III metallothioneins (phytochelatins and its desglycyl peptide) induced by various metals in root culture of Rubia tinctorum.-Plant Physiol. 110: 1145–1150, 1996.

    PubMed  CAS  Google Scholar 

  • Maitani, T., Kubota, H., Sato, K., Yamada, T.: Phytochelatins (class III metallothioneins) and their desglycyl peptides induced by cadmium in root culture of Rubia tinctorum L.-In: Klassen, C. (ed.): Metallothionein. Vol. IV. Pp 201–205. Birkhauser Verlag, Basel 1999.

    Google Scholar 

  • Mathys, W.: The role of malate, oxalate and mustard oil glucosides in the evolution of zinc resistance of herbage plants.-Physiol. Plant. 40: 130–136, 1997.

    Google Scholar 

  • McGrath, S.P.: Phytoextraction for soil remediation.-In: Brooks, R. (ed.): Plants that Hyperaccumulate Heavy Metals Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. Pp. 261–287. CAB International, New York 1998.

    Google Scholar 

  • McGrath, S.P., Sidoli, C.M.D., Baker, A.J.M., Reeves, R.D.: The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils.-In: Eijsackrs, H.J.P., Hamer, T. (ed.): Integrated Soil and Sediment Research: a Basis for Proper Protection. Pp. 673–676. Kluwer Academic Publishers, Dordrecht 1993.

    Google Scholar 

  • McNair, M.R.: The genetics of metal tolerance in vascular plants.-New Phytol. 124: 541–559, 1993.

    Google Scholar 

  • McNair, M.R., Tilstone, G.H., Smith, S.S.: The genetics of metal tolerance and accumulation in higher plants.-In: Terry, N., Bañuelos, G. (ed.): Phytoremediation of Contaminated Soil and Water. Pp. 235–250. Lewis Publishers, Boca Raton 2000.

    Google Scholar 

  • Mehra, R.K., Winge, D.R.: Cu (I) binding to Schizosaccaromyces pombe γ-glutamyl transferase peptides varying in chain lengths.-Arch. Biochem. Biophys. 265: 381–389, 1988.

    PubMed  CAS  Google Scholar 

  • Mehra, R.K., Winge, D.R.: Metal ion resistance in fungi. Molecular mechanism and their regulated expression.-J. Cell. Biochem. 45: 30–40, 1991.

    PubMed  CAS  Google Scholar 

  • Meuwly, P., Thibault, P., Schwan, A.L., Rauser, W.E.: Three families of thiol peptides are induced by cadmium in maize.-Plant J. 7: 391–400, 1995.

    PubMed  CAS  Google Scholar 

  • Milivojević, D.B., Nikolić, B.R., Drinić, G.: Effects of arsenic on phosphorous content in different organs and chlorophyll fluorescence in primary leaves of soybean.-Biol. Plant. 50: 149–151, 2006

    Google Scholar 

  • Misra, S., Gedamu, L.: Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabaccum L. plants.-Theor. appl. Genet. 78: 161–168, 1989.

    CAS  Google Scholar 

  • Mkandawire, M., Dudel, E.G.: Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.-Sci. total Environ. 336: 81–89, 2005.

    PubMed  CAS  Google Scholar 

  • Moffat, A.S.: Plants proving their worth in toxic metal cleanup.-Science 269: 302–303, 1995.

    PubMed  CAS  Google Scholar 

  • Morrison, R.S., Brooks, R.R., Reeves, R.D.: Nickel uptake by Alyssum species.-Plant Sci. Lett. 17: 453–457, 1980.

    Google Scholar 

  • Nakazawa, R., Kameda, Y., Ito, T., Ogita, Y., Michihata, R., Takenaga, H.: Selection and characterization of nickel-tolerant tobacco cells.-Biol. Plant. 48: 497–502, 2004.

    CAS  Google Scholar 

  • Newman, L.A., Reynolds, C.M.: Phytodegradation of organic compounds.-Curr. Opin. Biotechnol. 15: 225–230, 2004.

    PubMed  CAS  Google Scholar 

  • Odjegba, V.J., Fasidi, I.O.: Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation.-Ecotoxicology 13: 637–646, 2004.

    PubMed  CAS  Google Scholar 

  • O’Halloran, T.V., Cullota, V.C.: Metallo-chaperones — an intra cellular shuttle service for metal ions.-J. biol. Chem. 275: 25057–25060, 2000.

    PubMed  CAS  Google Scholar 

  • Orser, C.S., Salt, D.E., Pickering, I.I., Epstein, A., Ensley, B.D.: Brassica plants to provide enhanced mineral nutrition: Selenium phytoenrichment and metabolic transformation.-J. Med. Food 1: 253–261, 1999.

    Google Scholar 

  • Ortiz, D.F., Russcitti, T., McCuc, K.F., Ow, D.W.: Transport of metal binding peptides by HMT1, a fission yeast ABC type vacuolar membrane protein.-J. biol. Chem. 27: 4721–4728, 1995.

    Google Scholar 

  • Oven, M., Grill, E., Golan-Goldhirsh, A., Kutcxhan, T.M., Zenk, M.H.: Increase in free cysteine and citric acid in plant cells exposed to cobalt ions.-Phytochemistry 60: 467–474, 2002.

    PubMed  CAS  Google Scholar 

  • Pan, A.H., Yang, M., Tie, F., Li, L., Che, Z., Ru, B.: Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants.-Plant mol. Biol. 24: 341–351, 1994.

    PubMed  CAS  Google Scholar 

  • Papoyan, A., Kochian, L.V.: Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase.-Plant Physiol. 136: 3814–3823, 2004.

    PubMed  CAS  Google Scholar 

  • Parker, D.R., Feist, L.J., Varvel, T.W., Thomason, D.N., Zhang, Y.Q.: Selenium phytoremediation potential of Stanleya pinnata.-Plant Soil 249: 157–165, 2003.

    CAS  Google Scholar 

  • Paulsen, I.T., Saier, M.H., Jr.: A novel family of ubiquitous heavy metal ion transport proteins.-J. Membr. Biol. 156: 99–103, 1997.

    PubMed  CAS  Google Scholar 

  • Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L., Lasat, M.M., Garvin, D.F., Eide, D., Kochian, L.V.: The molecular physiology of heavy metal transport in zinc/cadmium hyperaccumulator Thlaspi caerulescens.-Proc. nat. Acad. Sci. USA 97: 4956–4960, 2000.

    PubMed  CAS  Google Scholar 

  • Persans, M.W., Yan, X., Patnoe, J.M., Kramer, U.: Molecular dissection of the role of histidine in hyperaccumulation in Thlaspi geosingense.-Plant Physiol. 121: 1117–1126, 1999.

    PubMed  CAS  Google Scholar 

  • Pickering, I.J., Prince, R.C., George, M.J., Smith, R.D., George, D.N., Salt, D.E.: Reduction and co-ordination of arsenic in Indian mustard.-Plant Physiol. 122: 1171–1177, 2000.

    PubMed  CAS  Google Scholar 

  • Pilon-Smits, E., Hwang, S., Lytle, M., Zhu, Y., Tai, J.C., Bravo, R.C., Chen, Y., Leustek, T., Terry, N.: Over-expression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance.-Plant Physiol. 119: 123–132, 1999.

    PubMed  CAS  Google Scholar 

  • Pilon-Smits, E., Pilon M.: Phytoremediation of metals using transgenic plants.-Crit. Rev. Plant Sci. 6: 91–95, 2001.

    Google Scholar 

  • Pilon-Smits, E.: Phytoremediation.-Annu. Rev. Plant Biol. 56: 15–39, 2005.

    PubMed  CAS  Google Scholar 

  • Pollard, A.J.: Metal hyperaccumulation.-New Phytol. 146: 179–181, 2000.

    Google Scholar 

  • Pollard, A.J., Baker, A.J.M.: Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens.-New Phytol. 135: 655–658, 1997.

    CAS  Google Scholar 

  • Prasad, M.N.V.: Nickelophilous plants and their significance in phytotechnologies.-Braz. J. Plant. Physiol. 17: 113–128, 2005.

    CAS  Google Scholar 

  • Prasad, M.N.V., Freitas, H.: Metal hyperaccumulation in plants — biodiversity prospecting for phytoremediation technology.-Electronic J. Biotechnol. 6: 275–321, 2003.

    Google Scholar 

  • Pufahl, R.A., Singer, C.P., Peariso, K.L., Lin, S.J., Schmidt, P.J., Fahrni, C.J., Penner-Hahn, J.E., O’Halloran, T.V.: Metal ion chaperone function of the soluble copper (I) receptor ATX1.-Science 278: 853–856, 1997.

    PubMed  CAS  Google Scholar 

  • Rabie, G.H.: Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy in metal polluted soil.-Afr. J. Biotechnol. 4: 332–345, 2005

    CAS  Google Scholar 

  • Raskin, I.: Plant genetic engineering may help with environmental cleanup.-Proc. nat. Acad. Sci. USA 93: 3164–3166, 1996.

    PubMed  CAS  Google Scholar 

  • Rauser, W.E.: Phytochelatins and related peptides.-Plant Physiol. 109: 1141–1149, 1995.

    PubMed  CAS  Google Scholar 

  • Rea, P.A., Li, Z-S., Lu, Y-P., Drosdowicz, Y.M., Martinoia, E.: From vacuolar GS-X pumps to multi-specific transporters.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 727–760, 1998.

    PubMed  CAS  Google Scholar 

  • Reeves, R.D., Baker, A.J.M.: Metal-accumulating plants.-In: Raskin, I., Ensley, B.D. (ed.): Phytoremediation of Toxic Metals. Pp. 193–229. John Wiley, New York 2000.

    Google Scholar 

  • Reeves, R.D., Brooks, R.R.: Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe.-Environ. Pollut. Ser. A 31: 277–285, 1983.

    CAS  Google Scholar 

  • Rugh, C.L., Senecoff, J.F., Meagher, R.B., Merkle, S.A.: Development of transgenic yellow poplar for mercury phytoremediation.-Natur. Biotechnol. 16: 925–--, 1998.

    CAS  Google Scholar 

  • Rugh, C.L., Wilde, H.D., Stack, N.M., Thompson, M.D., Summers, A.O., Meagher, R.B.: Mercuric ion reduction and the resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer A gene.-Proc. nat. Acad. Sci. USA 93: 3182–3187, 1996.

    PubMed  CAS  Google Scholar 

  • Sagner, S., Kneer, R., Warner, T., Cosson, J.P., Deus-Neumann, B., Zenk, M.H.: Hyperaccumulation, complexation, distribution of nickel in Sibertia acuminata.-Phytochemistry 47: 339–347, 1998.

    PubMed  CAS  Google Scholar 

  • Saier, M.H., Jr.: A functional phylogenetic classification system for transmembrane solute transporters.-Microbiol. mol. Biol. Rev. 64: 354–411, 2000.

    PubMed  CAS  Google Scholar 

  • Salt, D.E., Rauser, W.E.: Mg-ATP dependent transport of phytochelatins across the tonoplast of oat roots.-Plant Physiol. 107: 1293–1301, 1995.

    PubMed  CAS  Google Scholar 

  • Saxena, P.K., Krishna Raj, S., Dan, T., Perras, M.R., Vettakkorumakankav, N.N.: Phytoremediation of metal contaminated and polluted soils-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress In Plants — From Molecules To Ecosystems. Pp. 305–329. Springer-Verlag, Heidelberg-Berlin-New York 1999.

    Google Scholar 

  • Schat, H., Llugany, M., Voojis, R., Harley-Whitaker, J., Bleeker, P.M.: The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes.-J. exp. Bot. 53: 2381–2392, 2002.

    PubMed  CAS  Google Scholar 

  • Schat, H., Vooijs, R.: Multiple tolerance and co tolerance to heavy metals in Silene vulgaris: a co-segregation analysis.-New Phytol. 136: 489–496, 1997.

    CAS  Google Scholar 

  • Schmoger, M.C., Oven, M., Grill, E.: Detoxification of arsenic by phytochelatins in plants.-Plant Physiol. 128: 793–801, 2000.

    Google Scholar 

  • Shah, K., Dubey, R.S.: Effects of cadmium on RNA levels as well as activity and molecular form of ribonuclease in growing rice seedlings: role of proline as a possible enzyme protectant.-Plant Physiol. Biochem. 33: 577–584, 1995.

    CAS  Google Scholar 

  • Shah, K., Dubey, R.S.: A 18 kDa cadmium inducible protein complex: its isolation and characterization from rice (Oryza sativa L.) seedlings.-J. Plant Physiol. 152: 448–454, 1998.

    CAS  Google Scholar 

  • Shah, K., Kumar, R.G., Verma, S., Dubey, R.S.: Effects of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings.-Plant Sci. 161: 1135–1144, 2001.

    CAS  Google Scholar 

  • Sharma, N.C., Gardea-Torresday, J.L., Parson Sahi, S.V.: Chemical speciation of lead in Sesbania drumondii.-Environ. Toxicol. Chem. 23: 2068–2073, 2004.

    PubMed  CAS  Google Scholar 

  • Singh, O.V., Jain, R.K.: Phytoremediation of toxic aromatic pollutants from soil.-Appl. Microbiol. Biotechnol. 63: 128–135, 2003.

    PubMed  CAS  Google Scholar 

  • Sjaan, D.B., Woodrow, I.E., George, N. B., Sommer-Knudsen, J.: Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia.-Func. Plant Biol. 29: 899–905, 2002.

    Google Scholar 

  • Smith, S.E., McNair, M.R.: Hypostatic modifiers causes variation in degree of copper tolerance in Mimulus guttatus.-Heredity 80: 760–768, 1998.

    CAS  Google Scholar 

  • Song, W.-Y., Martinoia, E., Lee, J., Kim, D., Kim, D-Y, Vogt, E., Shim, D., Choi, K.S., Hwang, I., Lee, Y.: A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis.-Plant Physiol. 135: 1027–1039, 2004.

    PubMed  CAS  Google Scholar 

  • Song, W.-Y., Sohn, E.J., Martinoia, E., Lee, Y.J., Yang, Y.Y., Jasinski, M., Forestier, C., Hwang, I., Lee, Y.: Engineering tolerance and accumulation of lead and cadmium in transgenic plants.-Natur. Biotechnol. 21: 914–919, 2003.

    CAS  Google Scholar 

  • Soudek, P., Podračka, E., Vágner, M., Vaněk, T., Petřík, P., Tykva, R.: 226Ra uptake from soils into different plant species.-J. Radioanalytical Nucl. Chem.. 262: 187–189, 2004.

    CAS  Google Scholar 

  • Suresh, B., Ravishankar, G.A.: Phytoremediation-a novel and promising approach for environmental clean up.-Crit. Rev. Biotechnol. 24: 97–124, 2004.

    PubMed  CAS  Google Scholar 

  • Sykes, M., Yang, V., Blankenburg, J., Abu Bakr, S.: Biotechnology: working with nature to improve forest resources and products.-Int. environ. Conf. 29: 631–637, 1999.

    Google Scholar 

  • Tagmount, A., Berken, A., Terry, N.: An essential role of S-adenosyl-L-methionine:L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium methionine, the precursor of volatile selenium.-Plant Physiol. 130: 847–856, 2002.

    PubMed  CAS  Google Scholar 

  • Terry, N., Zayed, A.M., De Souza, M.P., Tarun, A.S.: Selenium in higher plants.-Annu Rev. Plant Physiol. Plant mol. Biol. 51: 401–432, 2000.

    PubMed  CAS  Google Scholar 

  • Thomas, J.C., Davies, E.C., Malick, F.K., Endreszl, C., Williams, C.R., Abbas, M., Petrella, S., Swisher, K., Perron, M., Edwards, R., Ostenkowski, P., Urbanczyk, N., Wiesend, W.N., Murray, K.S.: Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils.-Biotechnol. Progr. 19: 273–280, 2003.

    CAS  Google Scholar 

  • Thumann, J., Grill, E., Winnacker, E.L., Zenk, M.H.: Reactivation of metal-requiring enzymes by phytochelatin-metal complexes.-FEBS Lett. 284: 66–69, 1991.

    PubMed  CAS  Google Scholar 

  • Tian, J.L., Zhu, H.T., Yang, Y.A., He, Y.K.: Organic mercury tolerance, absorption and transformation in Spartina plants.-J. Plant Physiol. mol. Biol. (China) 30: 577–582, 2004.

    CAS  Google Scholar 

  • Tommasini, R., Vogt, E., Fromenteau, M., Hortensteiner, S., Matile, P., Amrhein, N., Martinoia, E.: An ABC transporter of Arabidopsis thaliana has both glutathione conjugate and chlorophyll catabolite transport activity.-Plant J. 13: 773–780, 1998.

    PubMed  CAS  Google Scholar 

  • Tong, Y.P., Kneer, R., Zhu, Y.G.: Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation.-Trends Plant Sci. 9: 7–9, 2004.

    PubMed  CAS  Google Scholar 

  • Van Assche, F., Clijster, H.: Effects of metal in enzyme activity in plants.-Plant Cell Environ. 13: 773–780, 1990.

    Google Scholar 

  • Van der Zaal, B.J., Neutboom, L.W., Pinars, J.E., Chardonnens, A.N., Schat, H., Verkleij, J.A., Hooykaas, P.J.: Over-expression of a novel Arabidopsis gene related to putative zinc transport genes from animals can lead to enhanced zinc resistance and accumulation.-Plant Physiol. 119: 1047–1056, 1999.

    PubMed  Google Scholar 

  • Van Huysen, T., Abdel-Ghany, S., Hale, K.L., LeDuc, D., Terry, N., Pilon-Smits, E.A.H.: Over-expression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea.-Planta 218: 71–78, 2003.

    PubMed  Google Scholar 

  • Van Huysen, T., Terry, N., Pilon-Smits, E.A.H.: Exploring the selenium phytoremediation potential of transgenic Indian mustard over-expressing ATP sulfurylase or cystathionine-γ-synthase.-Int. J. Phytoremed. 6: 111–118, 2004.

    Google Scholar 

  • Vatamaniuk, O.K., Mari, S., Lu, Y.P., Rea, P.A.: AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro construction.-Proc. nat. Acad. Sci. USA 96: 7110–7115, 1999.

    PubMed  CAS  Google Scholar 

  • Verret, F., Gravot, A., Auroy, P., Leonhardt, N., David, P., Nussaume, L., Vavasseur, A., Richaud, P.: Over-expression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance.-FEBS Lett. 576: 306–312, 2004.

    PubMed  CAS  Google Scholar 

  • Vinterhalter, B., Vinterhalter, D.: Nickel hyperaccumulation in shoot cultures of Alyssum narkgrafii.-Biol. Plant. 49: 121–124, 2005.

    CAS  Google Scholar 

  • Wagner, G.J.: Accumulation of cadmium in crop plants and its consequences to human health.-Adv. Agron. 51: 173–212, 1993.

    CAS  Google Scholar 

  • Wang, Q.R., Cui, Y.S., Liu, X. M., Dong, Y. T., Christie, P.: Soil contamination and uptake of heavy metals at polluted sites in China.-J. environ. Sci. Health. 38: 823–838, 2003.

    Google Scholar 

  • Wojcik, M., Tukiendorf, A.: Cadmium uptake, localization and detoxification in Zea mays.-Biol. Plant. 49: 237–245, 2005.

    CAS  Google Scholar 

  • Xue, S.G., Chen, Y.X., Reeves, R.D., Lin, Q., Fernando, D.R.: Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaeae).-Environ. Pollut. 131: 393–399, 2004.

    PubMed  CAS  Google Scholar 

  • Zhang, Y.W., Tam, N.F.Y., Wong, Y.S.: Cloning and characterization of type 2 metallothionein-like gene from a wetland plant, Typha latifolia.-Plant Sci. 167: 869–877, 2004.

    CAS  Google Scholar 

  • Zhao, F.J., Dunham, S.J., McGrath, S.P.: Arsenic hyperaccumulation by different fern species.-New Phytol. 156: 27–31, 2002.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, K., Nongkynrih, J.M. Metal hyperaccumulation and bioremediation. Biol Plant 51, 618–634 (2007). https://doi.org/10.1007/s10535-007-0134-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-007-0134-5

Additional key words

Navigation