Advertisement

Biologia Plantarum

, Volume 51, Issue 4, pp 618–634 | Cite as

Metal hyperaccumulation and bioremediation

  • K. Shah
  • J. M. Nongkynrih
Review

Abstract

The phytoremediation is an environment friendly, green technology that is cost effective and energetically inexpensive. Metal hyperaccumulator plants are used to remove metal from terrestrial as well as aquatic ecosystems. The technique makes use of the intrinsic capacity of plants to accumulate metal and transport them to shoots, ability to form phytochelatins in roots and sequester the metal ions. Harbouring the genes that are considered as signatures for the tolerance and hyperaccumulation from identified hyperaccumulator plant species into the transgenic plants provide a platform to develop the technology with the help of genetic engineering. This would result in transgenics that may have large biomass and fast growth a quality essential for removal of metal from soil quickly and in large quantities. Despite so much of a potential, the progress in the field of developing transgenic phytoremediator plant species is rather slow. This can be attributed to the lack of our understanding of complex interactions in the soil and indigenous mechanisms in the plants that allow metal translocation, accumulation and removal from a site. The review focuses on the work carried out in the field of metal phytoremediation from contaminated soil. The paper concludes with an assessment of the current status of technology development and its future prospects with emphasis on a combinatorial approach.

Additional key words

chaperones phytoextraction phytofiltration phytomining phytostabilization phytovolitization transporter 

Abbreviations

ACC deaminase

1-aminocyclopropane-1-carboxylicaciddeaminase

d.m.

dry mass

EDTA

ethylenediamine-tetraacetic acid

MT

metallothionein

PC

phytochelatin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica.-Biol. Plant. 50: 307–310, 2006.Google Scholar
  2. Alkorta, I., Hernandez-Allica, J., Becerril, J.M., Amezaga, I., Albizu, I., Garbisu, I.: Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic.-Environ. Sci. Biotechnol. 3: 71–90, 2004.Google Scholar
  3. Al-Najar, H., Kaschl, A., Schulz, R., Romheld, V.: Effects of thallium fractions in the soil and pollution origin in thallium uptake by hyperaccumulator plants: a key factor for assessment of phytoextraction.-Int. J. Phytorem. 7: 55–67, 2005.Google Scholar
  4. Alshawabkeh, A.N., Bricka, R.M.: Basics and applications of electrokinetic remediation.-In: Pessarakli, M. (ed.): Remediation Engineering of Contaminated Soils. Pp. 95–111. Marcel Dekker, New York 2000.Google Scholar
  5. Anderson, C.W.N., Brooks, R.R., Steward, R.B., Simack, R.: Harvesting a crop of gold in plants.-Nature 395: 553–554, 1998.Google Scholar
  6. Anderson, C.W.N., Brooks, R.R., Chiarucci, A., Lacoste, C.J., Leblanc, M., Robinson, B.H., Simack, R., Steward, R.B.: Phytomining for nickel, thallium and gold.-J. Geochem. Explor. 67: 407–415, 1999.Google Scholar
  7. Anton, A., Grosse, C., Reissmann, J., Prebyl, T., Nies, D.H.: CxcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp strain CH34.-J. Bacteriol. 181: 6876–6881, 1999.PubMedGoogle Scholar
  8. Antosiewicz, D.M., Hennig, J.: Over-expression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity.-Environ. Pollut. 129: 237–245, 2004.PubMedGoogle Scholar
  9. Appenroth, K.J., Bischoff, M., Gabrys, H., Stoeckel, J., Walckzak, T.: Kinetics of chromium (V) formation and reduction in fronds of duckweed Spirodela polyrhiza — a low frequency EPR study.-J. Inorg. Biochem. 78: 235–242, 2000.PubMedGoogle Scholar
  10. Archer, M.J.G., Caldwell, R.A.: Response of six Australian plants species to heavy metal contamination at an abandoned mine site.-Water Air Soil Pollut. 157: 257–267, 2004.Google Scholar
  11. Baker, A.J.M., Brooks, R.R.: Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry.-Biorecovery 1: 81–126, 1989.Google Scholar
  12. Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.A.C.: Metal Hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediaton of metal polluted soil.-In: Terry, N., Baneulos, G. (ed.): Phytoremediation of Contaminated Soil and Water. Pp. 85–107. Lewis Publications, Boca Raton 2000.Google Scholar
  13. Baker, A.J.M., Reves, R.D., Hajar, A.S.M.: Heavy metal accumulation and tolerance in British population of the metallophytes Thlaspi caerulescens J&C Presl. (Brassicaceae).-New Phytol. 127: 61–68, 1994.Google Scholar
  14. Baker, A.J.M., Walker, P.L.: Ecophysiology of metal uptake by tolerant plants.-In: Shaw, A.J. (ed.): Heavy Metal Tolerance in Plants: Evolutionary Aspects. Pp. 155–177. CRC Press, Boca Raton 1990.Google Scholar
  15. Bennett, L.E., Burkhead, J.L., Hale, K.L., Terry, N., Pilon, M., Pilon-Smits, E.A.H.: Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings.-J. Environ. Qual. 32: 432–440, 2003.PubMedGoogle Scholar
  16. Bennicelli, R., Steniewska, Z., Banach, A., Szajnocha, K., Ostrowski, J.: The ability of Azolla caroliniana to remove heavy metals {Hg (II), Cr (III), Cr (VI)} from municipal waste waters.-Plant Physiol. 133: 14–15, 2003.Google Scholar
  17. Berken, A., Mulholland, M.M., LeDuc, D.L., Terry, N.: Genetic engineering of plants to enhance selenium phytoremediation.-Crit. Rev. Plant Sci. 21: 567–582, 2002.Google Scholar
  18. Bernhard, W.R., Kagi, H.R.: Purification and characterization of a typical cadmium-binding peptides from Zea mays.-Experientia. 52(Suppl.): 309–315, 1987.Google Scholar
  19. Bizily, S.P., Rugh, C.L., Summers, A.O., Meagher, R.B.: Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials.-Proc. nat. Acad. Sci. USA 96: 6808–6813, 1999.PubMedGoogle Scholar
  20. Black, H.: Phytoremediation: a growing field with some concerns.-Scientist 13: 1–3, 1999.Google Scholar
  21. Blaylock, M.J., Salt, D.E., Duschenkov, S., Zakarova, O., Gussmann, C., Kapulnik, Y., Ensley, B.D., Raskin, I.: Enhanced accumulation of lead in Indian mustard by soil applied chelating agents.-Environ. Sci. Technol. 31: 860–865, 1997.Google Scholar
  22. Blaylock, M.J.: Field demonstration of phytoremediation of lead contaminated soils.-In: Terry, N., Banuelos, G. (ed.): Phytoremediation of Contaminated Soil and Water. Pp. 1–12. Lewis Publications, Boca Raton 2000.Google Scholar
  23. Bondada, B.R., Ma, L.Q.: Tolerance of heavy metals in vascular plants: arsenic hyperaccumulations in Chinese brake fern (Pteris vittata).-In: Chandra, S., Shrivastava, M. (ed.): Pteridology in the New Millennium. Pp. 397–420. Kluwer Academic Publishers, Dordecht-Boston-London 2003.Google Scholar
  24. Boonyapookana, B., Parkplan, P., Techapinyawat, S., DeLaune, R.D., Jugsujinda, A.: Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabaccum), and vetiver (Vetiveria zizanioides).-J. environ. Sci. Heal. A. 40: 117–137, 2005.Google Scholar
  25. Boyajian, G., Carriera, L.H.: Phytoremediation: a clean transition from laboratory to marketplace.-Natur. Biotechnol. 15: 127–128, 1997.Google Scholar
  26. Brewer, E.P., Saunders, A.J., Angle, J.S., Chaney, R.L., Macintosh, M.S.: Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus.-Theor. appl. Genet. 99: 761–771, 1999.Google Scholar
  27. Broadhurst, C.L., Chaney, R.L., Angle, J.S., Maugel, T.K., Erbe, E.F., Murphy, C.A.: Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes.-Environ. Sci. Technol. 38: 5797–5802, 2004.PubMedGoogle Scholar
  28. Brooks, R.R.: Copper and cobalt uptake in Hauminiastrum species.-Plant Soil 48: 541–544, 1977.Google Scholar
  29. Brown S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M.: Phytoremedaition potential of Thalspi caerulescens for zinc and cadmium contaminated soil.-J. environ. Qual. 23: 1151–1157, 1994.Google Scholar
  30. Caille, N., Swanwick, S., Zhao, F.J., McGrath, S.P.: Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilization.-Environ. Pollut. 132: 113–120, 2004.PubMedGoogle Scholar
  31. Celliar, M., Prive, G., Belouchi, A., Kwan, T., Rodriguez, V., Chia, W., Gros, P.: Nramp defines a family of membrane proteins.-Proc. nat. Acad. Sci. USA 91: 10089–10093, 1995.Google Scholar
  32. Chandra Sekhar, K., Kamala, C.T., Chary, N.S., Balaram, V., Garcia, G.: Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils.-Chemosphere 58: 507–514, 2005.PubMedGoogle Scholar
  33. Chaney, R.L.: Plant uptake of inorganic waste constitutes.-In: Parr, J.F., Marsh, P.B., Kla, J.M. (ed.): Land Treatment of Hazardous Wastes. Pp. 50–76. Park Ridge Noyes Data Corp., London 1983.Google Scholar
  34. Chaney, R.L.: Zinc phytotoxicity.-In: Robson, A.D. (ed.) Zinc in Soil and Plants. Pp. 135–158. Kluwer Academic Publisher, Dordrecht-Amsterdam 1993.Google Scholar
  35. Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Angle, J.S., Baker, A.J.M.: Phytoremediation of soil metals.-Curr. Opin. Biotechnol. 8: 279–284, 1997.PubMedGoogle Scholar
  36. Che, D.S., Meagher, R.B., Heaton, A.C.P., Lima, A., Rugh, C.L., Merkle, S.A.: Expression of mercuric ion reductase in eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance.-J. Plant Biotechnol. 1: 311–319, 2003.Google Scholar
  37. Chen, J., Huang, J.W., Casper, T., Cunningham, S.D.: Arabidopsis as a model system for studying lead accumulation and tolerance in plants.-In: Kruger, E.L. (ed.): Phytoremediation of Soil and Water Contaminants. Pp 264–273. American Chemical Society, Washington 1997.Google Scholar
  38. Chen, J., Zhao, J., Goldsbrough, P.B.: Characterization of phytochelatin-synthase from tomato.-Physiol. Plant. 101: 165–172, 1997.Google Scholar
  39. Clarkson, D.T.: The uptake and translocation of manganese by plant roots.-In: Graham, R.D., Hannam, R.J., Uren, N.C. (ed.): Manganese in Soil and Plants. Pp. 101–111. Kluwer Academic Publisher, Dordrecht 1988.Google Scholar
  40. Clemens, S.: Molecular mechanisms of plant metal hoemostatsis.-Planta. 212: 475–486, 2001.PubMedGoogle Scholar
  41. Clemens, S., Antonsiewz, D.M., Ward, J.M., Schachtman, D.P., Schroder, J.J.: The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.-Proc. nat. Sci. USA 95: 12043–12048, 1998.Google Scholar
  42. Clemens, S., Kim, E., Newmann, J, Schroeder, D.: Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.-EMBO J. 18: 3325–3333, 1999.PubMedGoogle Scholar
  43. Clemens, S., Palmgren, M.G.. Kramer, U.: A long way ahead: understanding and engineering plant metal accumulation.-Trends Plant Sci. 7: 309–314, 2002.PubMedGoogle Scholar
  44. Cobbet, C., Goldsbrough, P.: Phytochelatins and metallothioneins: role in heavy metal detoxification and homeostasis.-Annu. Rev. Plant Biol. 53: 159–182, 2002.Google Scholar
  45. Conklin, D.S., MacMasters, J.A., Culbertson, M.R., Kung, C.: COT1 genes involved in cobalt accumulation in Saccharomyces cerevisiae.-Mol. cell. Biol. 12: 3678–3688, 1992.PubMedGoogle Scholar
  46. Cooper, E.M., Sims, J.T., Cunningham, S.D., Huang, J.W., Berti, W.R.: Chelate-assisted phytoextraction of lead from contaminated soils.-J. environ. Qual. 28: 1709–1719, 1999.Google Scholar
  47. Cunningham, S.D., Berti, W.R.: Remediation of contaminated soils with green plants: An overview.-In Vitro cell. dev. Biol. Plant 29: 207–212, 1993.Google Scholar
  48. Cunningham, S.D., Berti, W.R., Huang, J.W.: Phytoremediation of contaminated soils.-TIBTECH 13: 393–397, 1995.Google Scholar
  49. Curie C., Panaviene Z., Loulerguech C., Delaporta S.L., Briat J. F., Walker E.L.: Maize yellow stripe encodes a membrane protein directly involved in Fe (III) uptake.-Nature 409: 346–349, 2001.PubMedGoogle Scholar
  50. Dahmani-Muller, Van Oort, F., Gelie, B., Balabane, M.: Strategies of heavy metal uptake by three plant species growing near a metal smelter.-Environ. Pollut. 109: 231–238, 2000.PubMedGoogle Scholar
  51. De Knecht, J.A., Van Baren, N., Ten Bookum, W.M., Wong, F., Sang, H.W., Koevoet, P.L.M., Schat, H., Verkleij, J.A.C.: Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris.-Plant Sci. 106: 9–18, 1995.Google Scholar
  52. Delhaize, E., Randall, P.J., Wallace, P.A., Pinkerton, A.: Screening Arabidopsis for mutants in mineral nutrition.-Plant Soil 156: 134–141, 1993.Google Scholar
  53. Delhaize, E., Ryan, P.R.: Aluminium toxicity and and tolerance in plants.-Plant Physiol. 107: 315–321, 1995.PubMedGoogle Scholar
  54. Dhankher, O.P., Li, Y., Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Sashti, N.A., Meagher, R.B.: Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression.-Natur. Biotechnol. 20: 1140–1145, 2002.Google Scholar
  55. Dietz, K.J, Baier, M., Kramer, U.: Free radicals and reactive oxygen species are mediators of heavy metal toxicity in plants.-In: Prasad, M.N.V., Hagemmeyer, J. (ed.): Heavy Metal Stress in Plants: from Molecules to Ecosystem. Pp. 79–97. Springer-Verlag, Berlin 1999.Google Scholar
  56. Dondon, M.G., De Vathaire, F., Quenel, P., Frery, N.: Cancer mortality during the 1968–1994 period in a mining area in France.-Eur. J. Cancer Prev. 14: 297–301, 2005.PubMedGoogle Scholar
  57. Dražić, G., Mihalović, N., Lojić, M.: Cadmium concentration in Medicago sativa seedlings treated with salicylic acid.-Biol. Plant. 50: 239–244, 2006.Google Scholar
  58. Ducic, T., Polle, A.: Transport and detoxification of manganese and copper in plants.-Braz. J. Plant Physiol. 17: 103–112, 2005.Google Scholar
  59. Eide, D., Broderius, M., Fett, J., Guerinot, M.L.: A novel iron-regulated metal transporter from plants identified by functional expression in yeast.-Proc. nat. Acad. Sci. USA 93: 5624–5628, 1996.PubMedGoogle Scholar
  60. Evans, K.M., Gatehouse, J.A., Lindsay, W.P., Shi, J., Tommey, A.M., Robinson, N.J.: Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function.-Plant mol. Biol. 20: 1019–1028, 1992.PubMedGoogle Scholar
  61. Fox, T.C., Guerinot, M.L.: Molecular biology of cation transport in plants.-Annu. Rev. Plant Physiol. Plant. mol. Biol. 49: 669–696, 1998.PubMedGoogle Scholar
  62. Fu, D., Beeler, T.J., Dunn, T.M.: Sequence, mapping and destruction of CCC2: a gene that cross complements the Ca2+-sensitive phenotype of csg1 mutant and encodes a P-type ATPase belonging to the Cu2+-ATPase subfamily.-Yeast 11: 283–292, 1995.PubMedGoogle Scholar
  63. Gardea-Torresday, J.L., De la Rosa, G., Peralta-Videa, J.R., Montes, M., Cruz-Jiminez, G., Cano-Aguilera: Differential uptake and transport of trivalent and hexavalent chromium by tumble wed (Salsola kali).-Arch. Environ. Contam. Toxicol. 48: 225–232, 2005.Google Scholar
  64. Gekeler, W., Grill, E., Winnacker, E-L., Zenk, M.H.: Survey of the plant kingdom for the ability to bind metals through phytochelatins.-Z. Naturforsch. 44: 361–369, 1989.Google Scholar
  65. Gleba, D., Borisjuk, N.V., Borisjuk, L.G., Kneer, R., Poulev, A., Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y.Y., Raskin, I.: Use of plant roots for phytoremediation and molecular farming.-Proc. nat. Acad. Sci. USA 96: 5973–5977, 1999.PubMedGoogle Scholar
  66. Glerum, D.M., Shtanko, A., Tzagoloff, A.: Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase.-J. biol. Chem. 271: 14504–14509, 1996.PubMedGoogle Scholar
  67. Goldbold, D.L., Horst, W.J., Collins, J.C., Thumann, D.A., Marschner, H.: Accumulation of zinc and organic acids in the roots of zinc-tolerant and non-tolerant ecotypes of Deschampia caespitosa.-J. Plant. Physiol. 116: 59–69, 1984.Google Scholar
  68. Gratão, P.L., Prasad, M.N.V., Cardoso, P.F., Lea, P.J., Azevedo, R.A.: Phytoremediation: green technology for the clean up of toxic metals in the environment.-Braz. J. Plant Physiol. 17: 53–64, 2005.Google Scholar
  69. Grichko, V.P., Filby, B., Glick, B.R.: Increased ability of transgenic plants expressing the enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn.-J. Biotechnol. 81: 45–53, 2000.PubMedGoogle Scholar
  70. Grill, E., Loffler, S., Winnacker, E.-L., Zenk, M.H.: Phytochelatins, the heavy metal binding proteins are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).-Proc. nat. Acad. Sci. USA 86: 6838–6842, 1989.PubMedGoogle Scholar
  71. Grill, E., Winnacker, E.-L., Zenk, M.H.: Homo-phytochelatins as heavy metal-binding peptides of homoglutathione-containing Fabales.-FEBS Lett. 205: 47–50, 1986a.Google Scholar
  72. Grill, E., Winnacker, E.-L., Zenk, M.H.: Synthesis of seven homologous phytochelatins in metal-exposed Schizosaccharomyces cerevisiae cells.-FEBS Lett. 197: 115–120, 1986b.Google Scholar
  73. Grill, E., Winnacker, E.-L., Zenk, M.H.: Phytochelatins the metal binding peptides from plants are functionally analogous to metallothioneins.-Proc. nat. Acad. Sci. USA 84: 439–443, 1987.PubMedGoogle Scholar
  74. Grotz, N., Fox, T., Cannoly, E., Park, W., Guerinot, M.L., Eide, D.: Identification of a family of zinc transporter from Arabidopsis that respond to zinc deficiency.-Proc. nat. Acad. Sci. USA 86: 6838–6842, 1988.Google Scholar
  75. Guerinot, M.L., Eide, D.: Zeroing in on zinc uptake in yeast and plants.-Curr. Opin. Plant Biol. 2: 244–249, 1999.PubMedGoogle Scholar
  76. Hamer, D.H.: Metallothioneins.-Annu. Rev. Biochem. 55: 913–951, 1986.PubMedGoogle Scholar
  77. Hartley-Whitaker, J., Woods, C., Meharg, A.A.: Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus?-New Phytol. 155: 219–225. 2002Google Scholar
  78. Hasegawa, I., Terada, E., Sunairi, M., Wakita, H., Schimachi, F., Nakajima, M., Yazaki, J.: Genetic improvement in heavy metal tolerance in plants by transfer of yeast metalllothionein gene (CUP1).-Plant Soil 196: 277–281, 1997.Google Scholar
  79. Hattori, J., Labbé, H., Miki, B.L.: Construction and expression of a metallothionein-γ-glucuronidase gene fusion.-Genome 37: 508–512, 1994.PubMedGoogle Scholar
  80. Hayashi, Y., Nakagawa, C.W., Mutoh, N., Isobe, M., Goto, T.: Two pathways in the biosynthesis of cadystins (γ EC)nG in the cell free system of fission yeast.-Biochem. Cell Biol. 69: 115–121, 1991.PubMedGoogle Scholar
  81. Hirschi, K.D., Zhen, R.G., Cunningham, K.W., Rea, P.A., Fink, G.R.: CAX1 and H+/Ca2+ antiporter from Arabidopsis.-Proc. nat. Acad. Sci. USA 93: 8782–8786, 1996.PubMedGoogle Scholar
  82. Hirschi, E.D., Korenkey, V.D., Wilganewski, N.I., Wagner, G.I.: Expression of Arabidopsis CAX2 in tobacco, altered metal accumulation and increased manganese tolerance.-Plant Physiol. 124: 128–133, 2000.Google Scholar
  83. Howden, R., Goldsborough, P.B., Anderson, C.R., Cobbett, C.S.: Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.-Plant Physiol. 107: 1059–1066, 1995.PubMedGoogle Scholar
  84. Huang, J.W., Blaylock, M.J., Kapulnik, Y., Ensley, B.D.: Phytoremediation of Uranium-contaminated soils: Role of organic acids in triggering Uranium hyperaccumulation in plants.-Environ. Sci. Technol. 32: 2004–2008, 1998.Google Scholar
  85. Huang, J.W., Chen, J.W., Berti, W.R., Cunningham, S.D.: Phytoremediation of lead contaminated soil: role of synthetic chelates in lead phytoextraction.-Environ. Sci. Technol. 31: 800–805, 1997.Google Scholar
  86. Huang, J.W., Cunningham, S.D.: Lead phytoextraction: species variation in lead uptake and translocation.-New Phytol. 134: 75–84, 1996.Google Scholar
  87. Jaffre, T., Brooks, R.R., Lee, J., Reeves, R.D.: Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia.-Science 193: 579–580, 1976.PubMedGoogle Scholar
  88. Kamizono, A., Nishizawa, M., Teranishi, Y., Murata, K., Kimura, A.: Identification of a gene conferring resistance to zinc and cadmium in Saccharomyces cerevisiae.-Mol. gen. Genet. 219: 161–167, 1989.PubMedGoogle Scholar
  89. Kamnev, A.A., Van der Lelie, D.: Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation.-Biosci. Rep. 20: 239–258, 2000.PubMedGoogle Scholar
  90. Kawashima, C.G., Noji, M., Nakamura, M., Ogra, Y., Suzuki, K.T., Saito, K.: Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase.-Biotech. Lett. 26: 153–157, 2004.Google Scholar
  91. Klapheck, S., Crost, B., Stark, J., Zimmermann, H.: γ-Glutamylcysteinylserine: a new homologue of glutathione in plants of the family Poaceae.-Bot. Acta 105: 174–179, 1992.Google Scholar
  92. Klapheck, S., Fleigner, W., Zimmer, I.: Hydroxymethyl phytochelatins [(γ-glutamylcystine)n serine] are metal induced peptides of Poaceae.-Plant Physiol. 104: 1325–1332, 1994.PubMedGoogle Scholar
  93. Klapheck, S., Schlunz, S., Bergmann, L.: Phytochelatins and homo-phytochelatins in Pisum sativum L.-Plant Physiol. 107: 515–521, 1995.PubMedGoogle Scholar
  94. Kneer, R., Zenk, M.H.: Phytochelatins protect plant enzymes from heavy metal poisoning.-Phytochemistry 31: 2663–2667, 1992.Google Scholar
  95. Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L., Pakrasi, H.B.: The IRT1 protein from Arabidopsis thaliana, is a metal transporter with a broad substrate range.-Plant mol. Biol. 40: 37–44, 1999.PubMedGoogle Scholar
  96. Kramer, U.: Phytoremediation: novel approaches to cleaning up polluted soils.-Curr. Opin. Biotechnol. 16: 133–141, 2005.PubMedGoogle Scholar
  97. Kramer, U., Cotter-Howells, J.D., Charnock, J.N., Baker, A.J.M., Smith, A.C.: Free histidine as a metal chelator in plants that accumulate nickel.-Nature 379: 635–638, 1996.Google Scholar
  98. Lasat, M.M.: Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues.-J. Hazard. Substr. Res. 2: 1–25, 2000.Google Scholar
  99. Lasat, M.M.: Phytoextraction of toxic metals: a review of biological mechanisms.-J. Environ. Qual. 31: 109–120, 2002.PubMedGoogle Scholar
  100. Lasat, M.M., Baker, A.J.M., Kochain, L.V.: Altered zinc compartmentation in the root symplasms and stimulated ainc absorption in the leaves and the mechanism involved in Thalspi caerulescens.-Plant Physiol. 118: 875–883, 1998.PubMedGoogle Scholar
  101. LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., Abdel Samie, M., Chiang, C.Y., Tagmount, A., DeSouza, M., Neuhierl, B., Bock, A., Caruso, J., Terry, N.: Over-expression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation.-Plant Physiol. 135: 377–383, 2004.PubMedGoogle Scholar
  102. Lee, J., Bae, H., Jeong, J., Lee, J.Y., Yang, Y.Y., Hwang, I., Martinoia, E., Lee, Y.: Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decrease uptake of heavy metals.-Plant Physiol. 133: 589–596, 2003a.PubMedGoogle Scholar
  103. Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B., Korban, S.S.: Over-expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress.-Plant Physiol. 131: 656–663, 2003b.PubMedGoogle Scholar
  104. Li, L., Kaplan, J.: Defect in yeast iron transport system results in increased metal hypersensitivity because of the increased expression of transporter with broad transition metal specificity.-J. biol. Chem. 271: 22181–22187, 1998.Google Scholar
  105. Lombi, E., Zhao, F.J., Dunham, S.J., McGrath, S.P.: Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction.-J. Environ. Qual. 30: 1919–1926, 2001.PubMedGoogle Scholar
  106. Lopez-Millan, A.F., Ellis, D.R., Grusak, M.A.: Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula.-Plant mol. Biol. 54: 583–596, 2004.PubMedGoogle Scholar
  107. Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kenelly, E.D.: A fern that hyperaccumulates arsenic.-Nature 409: 579–582, 2001.PubMedGoogle Scholar
  108. Maiti, I.B., Hunt, A.G., Wagner, G.J., Yeargan, R., Hunt, A.G.: Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco.-Plant Sci. 76: 99–107, 1991.Google Scholar
  109. Maitani, T., Kubota, H., Sato, K., Yamada, T.: The composition of metal bound to class III metallothioneins (phytochelatins and its desglycyl peptide) induced by various metals in root culture of Rubia tinctorum.-Plant Physiol. 110: 1145–1150, 1996.PubMedGoogle Scholar
  110. Maitani, T., Kubota, H., Sato, K., Yamada, T.: Phytochelatins (class III metallothioneins) and their desglycyl peptides induced by cadmium in root culture of Rubia tinctorum L.-In: Klassen, C. (ed.): Metallothionein. Vol. IV. Pp 201–205. Birkhauser Verlag, Basel 1999.Google Scholar
  111. Mathys, W.: The role of malate, oxalate and mustard oil glucosides in the evolution of zinc resistance of herbage plants.-Physiol. Plant. 40: 130–136, 1997.Google Scholar
  112. McGrath, S.P.: Phytoextraction for soil remediation.-In: Brooks, R. (ed.): Plants that Hyperaccumulate Heavy Metals Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining. Pp. 261–287. CAB International, New York 1998.Google Scholar
  113. McGrath, S.P., Sidoli, C.M.D., Baker, A.J.M., Reeves, R.D.: The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils.-In: Eijsackrs, H.J.P., Hamer, T. (ed.): Integrated Soil and Sediment Research: a Basis for Proper Protection. Pp. 673–676. Kluwer Academic Publishers, Dordrecht 1993.Google Scholar
  114. McNair, M.R.: The genetics of metal tolerance in vascular plants.-New Phytol. 124: 541–559, 1993.Google Scholar
  115. McNair, M.R., Tilstone, G.H., Smith, S.S.: The genetics of metal tolerance and accumulation in higher plants.-In: Terry, N., Bañuelos, G. (ed.): Phytoremediation of Contaminated Soil and Water. Pp. 235–250. Lewis Publishers, Boca Raton 2000.Google Scholar
  116. Mehra, R.K., Winge, D.R.: Cu (I) binding to Schizosaccaromyces pombe γ-glutamyl transferase peptides varying in chain lengths.-Arch. Biochem. Biophys. 265: 381–389, 1988.PubMedGoogle Scholar
  117. Mehra, R.K., Winge, D.R.: Metal ion resistance in fungi. Molecular mechanism and their regulated expression.-J. Cell. Biochem. 45: 30–40, 1991.PubMedGoogle Scholar
  118. Meuwly, P., Thibault, P., Schwan, A.L., Rauser, W.E.: Three families of thiol peptides are induced by cadmium in maize.-Plant J. 7: 391–400, 1995.PubMedGoogle Scholar
  119. Milivojević, D.B., Nikolić, B.R., Drinić, G.: Effects of arsenic on phosphorous content in different organs and chlorophyll fluorescence in primary leaves of soybean.-Biol. Plant. 50: 149–151, 2006Google Scholar
  120. Misra, S., Gedamu, L.: Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabaccum L. plants.-Theor. appl. Genet. 78: 161–168, 1989.Google Scholar
  121. Mkandawire, M., Dudel, E.G.: Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.-Sci. total Environ. 336: 81–89, 2005.PubMedGoogle Scholar
  122. Moffat, A.S.: Plants proving their worth in toxic metal cleanup.-Science 269: 302–303, 1995.PubMedGoogle Scholar
  123. Morrison, R.S., Brooks, R.R., Reeves, R.D.: Nickel uptake by Alyssum species.-Plant Sci. Lett. 17: 453–457, 1980.Google Scholar
  124. Nakazawa, R., Kameda, Y., Ito, T., Ogita, Y., Michihata, R., Takenaga, H.: Selection and characterization of nickel-tolerant tobacco cells.-Biol. Plant. 48: 497–502, 2004.Google Scholar
  125. Newman, L.A., Reynolds, C.M.: Phytodegradation of organic compounds.-Curr. Opin. Biotechnol. 15: 225–230, 2004.PubMedGoogle Scholar
  126. Odjegba, V.J., Fasidi, I.O.: Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation.-Ecotoxicology 13: 637–646, 2004.PubMedGoogle Scholar
  127. O’Halloran, T.V., Cullota, V.C.: Metallo-chaperones — an intra cellular shuttle service for metal ions.-J. biol. Chem. 275: 25057–25060, 2000.PubMedGoogle Scholar
  128. Orser, C.S., Salt, D.E., Pickering, I.I., Epstein, A., Ensley, B.D.: Brassica plants to provide enhanced mineral nutrition: Selenium phytoenrichment and metabolic transformation.-J. Med. Food 1: 253–261, 1999.Google Scholar
  129. Ortiz, D.F., Russcitti, T., McCuc, K.F., Ow, D.W.: Transport of metal binding peptides by HMT1, a fission yeast ABC type vacuolar membrane protein.-J. biol. Chem. 27: 4721–4728, 1995.Google Scholar
  130. Oven, M., Grill, E., Golan-Goldhirsh, A., Kutcxhan, T.M., Zenk, M.H.: Increase in free cysteine and citric acid in plant cells exposed to cobalt ions.-Phytochemistry 60: 467–474, 2002.PubMedGoogle Scholar
  131. Pan, A.H., Yang, M., Tie, F., Li, L., Che, Z., Ru, B.: Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants.-Plant mol. Biol. 24: 341–351, 1994.PubMedGoogle Scholar
  132. Papoyan, A., Kochian, L.V.: Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase.-Plant Physiol. 136: 3814–3823, 2004.PubMedGoogle Scholar
  133. Parker, D.R., Feist, L.J., Varvel, T.W., Thomason, D.N., Zhang, Y.Q.: Selenium phytoremediation potential of Stanleya pinnata.-Plant Soil 249: 157–165, 2003.Google Scholar
  134. Paulsen, I.T., Saier, M.H., Jr.: A novel family of ubiquitous heavy metal ion transport proteins.-J. Membr. Biol. 156: 99–103, 1997.PubMedGoogle Scholar
  135. Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L., Lasat, M.M., Garvin, D.F., Eide, D., Kochian, L.V.: The molecular physiology of heavy metal transport in zinc/cadmium hyperaccumulator Thlaspi caerulescens.-Proc. nat. Acad. Sci. USA 97: 4956–4960, 2000.PubMedGoogle Scholar
  136. Persans, M.W., Yan, X., Patnoe, J.M., Kramer, U.: Molecular dissection of the role of histidine in hyperaccumulation in Thlaspi geosingense.-Plant Physiol. 121: 1117–1126, 1999.PubMedGoogle Scholar
  137. Pickering, I.J., Prince, R.C., George, M.J., Smith, R.D., George, D.N., Salt, D.E.: Reduction and co-ordination of arsenic in Indian mustard.-Plant Physiol. 122: 1171–1177, 2000.PubMedGoogle Scholar
  138. Pilon-Smits, E., Hwang, S., Lytle, M., Zhu, Y., Tai, J.C., Bravo, R.C., Chen, Y., Leustek, T., Terry, N.: Over-expression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance.-Plant Physiol. 119: 123–132, 1999.PubMedGoogle Scholar
  139. Pilon-Smits, E., Pilon M.: Phytoremediation of metals using transgenic plants.-Crit. Rev. Plant Sci. 6: 91–95, 2001.Google Scholar
  140. Pilon-Smits, E.: Phytoremediation.-Annu. Rev. Plant Biol. 56: 15–39, 2005.PubMedGoogle Scholar
  141. Pollard, A.J.: Metal hyperaccumulation.-New Phytol. 146: 179–181, 2000.Google Scholar
  142. Pollard, A.J., Baker, A.J.M.: Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens.-New Phytol. 135: 655–658, 1997.Google Scholar
  143. Prasad, M.N.V.: Nickelophilous plants and their significance in phytotechnologies.-Braz. J. Plant. Physiol. 17: 113–128, 2005.Google Scholar
  144. Prasad, M.N.V., Freitas, H.: Metal hyperaccumulation in plants — biodiversity prospecting for phytoremediation technology.-Electronic J. Biotechnol. 6: 275–321, 2003.Google Scholar
  145. Pufahl, R.A., Singer, C.P., Peariso, K.L., Lin, S.J., Schmidt, P.J., Fahrni, C.J., Penner-Hahn, J.E., O’Halloran, T.V.: Metal ion chaperone function of the soluble copper (I) receptor ATX1.-Science 278: 853–856, 1997.PubMedGoogle Scholar
  146. Rabie, G.H.: Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy in metal polluted soil.-Afr. J. Biotechnol. 4: 332–345, 2005Google Scholar
  147. Raskin, I.: Plant genetic engineering may help with environmental cleanup.-Proc. nat. Acad. Sci. USA 93: 3164–3166, 1996.PubMedGoogle Scholar
  148. Rauser, W.E.: Phytochelatins and related peptides.-Plant Physiol. 109: 1141–1149, 1995.PubMedGoogle Scholar
  149. Rea, P.A., Li, Z-S., Lu, Y-P., Drosdowicz, Y.M., Martinoia, E.: From vacuolar GS-X pumps to multi-specific transporters.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 727–760, 1998.PubMedGoogle Scholar
  150. Reeves, R.D., Baker, A.J.M.: Metal-accumulating plants.-In: Raskin, I., Ensley, B.D. (ed.): Phytoremediation of Toxic Metals. Pp. 193–229. John Wiley, New York 2000.Google Scholar
  151. Reeves, R.D., Brooks, R.R.: Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe.-Environ. Pollut. Ser. A 31: 277–285, 1983.Google Scholar
  152. Rugh, C.L., Senecoff, J.F., Meagher, R.B., Merkle, S.A.: Development of transgenic yellow poplar for mercury phytoremediation.-Natur. Biotechnol. 16: 925–--, 1998.Google Scholar
  153. Rugh, C.L., Wilde, H.D., Stack, N.M., Thompson, M.D., Summers, A.O., Meagher, R.B.: Mercuric ion reduction and the resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial mer A gene.-Proc. nat. Acad. Sci. USA 93: 3182–3187, 1996.PubMedGoogle Scholar
  154. Sagner, S., Kneer, R., Warner, T., Cosson, J.P., Deus-Neumann, B., Zenk, M.H.: Hyperaccumulation, complexation, distribution of nickel in Sibertia acuminata.-Phytochemistry 47: 339–347, 1998.PubMedGoogle Scholar
  155. Saier, M.H., Jr.: A functional phylogenetic classification system for transmembrane solute transporters.-Microbiol. mol. Biol. Rev. 64: 354–411, 2000.PubMedGoogle Scholar
  156. Salt, D.E., Rauser, W.E.: Mg-ATP dependent transport of phytochelatins across the tonoplast of oat roots.-Plant Physiol. 107: 1293–1301, 1995.PubMedGoogle Scholar
  157. Saxena, P.K., Krishna Raj, S., Dan, T., Perras, M.R., Vettakkorumakankav, N.N.: Phytoremediation of metal contaminated and polluted soils-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress In Plants — From Molecules To Ecosystems. Pp. 305–329. Springer-Verlag, Heidelberg-Berlin-New York 1999.Google Scholar
  158. Schat, H., Llugany, M., Voojis, R., Harley-Whitaker, J., Bleeker, P.M.: The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes.-J. exp. Bot. 53: 2381–2392, 2002.PubMedGoogle Scholar
  159. Schat, H., Vooijs, R.: Multiple tolerance and co tolerance to heavy metals in Silene vulgaris: a co-segregation analysis.-New Phytol. 136: 489–496, 1997.Google Scholar
  160. Schmoger, M.C., Oven, M., Grill, E.: Detoxification of arsenic by phytochelatins in plants.-Plant Physiol. 128: 793–801, 2000.Google Scholar
  161. Shah, K., Dubey, R.S.: Effects of cadmium on RNA levels as well as activity and molecular form of ribonuclease in growing rice seedlings: role of proline as a possible enzyme protectant.-Plant Physiol. Biochem. 33: 577–584, 1995.Google Scholar
  162. Shah, K., Dubey, R.S.: A 18 kDa cadmium inducible protein complex: its isolation and characterization from rice (Oryza sativa L.) seedlings.-J. Plant Physiol. 152: 448–454, 1998.Google Scholar
  163. Shah, K., Kumar, R.G., Verma, S., Dubey, R.S.: Effects of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings.-Plant Sci. 161: 1135–1144, 2001.Google Scholar
  164. Sharma, N.C., Gardea-Torresday, J.L., Parson Sahi, S.V.: Chemical speciation of lead in Sesbania drumondii.-Environ. Toxicol. Chem. 23: 2068–2073, 2004.PubMedGoogle Scholar
  165. Singh, O.V., Jain, R.K.: Phytoremediation of toxic aromatic pollutants from soil.-Appl. Microbiol. Biotechnol. 63: 128–135, 2003.PubMedGoogle Scholar
  166. Sjaan, D.B., Woodrow, I.E., George, N. B., Sommer-Knudsen, J.: Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia.-Func. Plant Biol. 29: 899–905, 2002.Google Scholar
  167. Smith, S.E., McNair, M.R.: Hypostatic modifiers causes variation in degree of copper tolerance in Mimulus guttatus.-Heredity 80: 760–768, 1998.Google Scholar
  168. Song, W.-Y., Martinoia, E., Lee, J., Kim, D., Kim, D-Y, Vogt, E., Shim, D., Choi, K.S., Hwang, I., Lee, Y.: A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis.-Plant Physiol. 135: 1027–1039, 2004.PubMedGoogle Scholar
  169. Song, W.-Y., Sohn, E.J., Martinoia, E., Lee, Y.J., Yang, Y.Y., Jasinski, M., Forestier, C., Hwang, I., Lee, Y.: Engineering tolerance and accumulation of lead and cadmium in transgenic plants.-Natur. Biotechnol. 21: 914–919, 2003.Google Scholar
  170. Soudek, P., Podračka, E., Vágner, M., Vaněk, T., Petřík, P., Tykva, R.: 226Ra uptake from soils into different plant species.-J. Radioanalytical Nucl. Chem.. 262: 187–189, 2004.Google Scholar
  171. Suresh, B., Ravishankar, G.A.: Phytoremediation-a novel and promising approach for environmental clean up.-Crit. Rev. Biotechnol. 24: 97–124, 2004.PubMedGoogle Scholar
  172. Sykes, M., Yang, V., Blankenburg, J., Abu Bakr, S.: Biotechnology: working with nature to improve forest resources and products.-Int. environ. Conf. 29: 631–637, 1999.Google Scholar
  173. Tagmount, A., Berken, A., Terry, N.: An essential role of S-adenosyl-L-methionine:L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium methionine, the precursor of volatile selenium.-Plant Physiol. 130: 847–856, 2002.PubMedGoogle Scholar
  174. Terry, N., Zayed, A.M., De Souza, M.P., Tarun, A.S.: Selenium in higher plants.-Annu Rev. Plant Physiol. Plant mol. Biol. 51: 401–432, 2000.PubMedGoogle Scholar
  175. Thomas, J.C., Davies, E.C., Malick, F.K., Endreszl, C., Williams, C.R., Abbas, M., Petrella, S., Swisher, K., Perron, M., Edwards, R., Ostenkowski, P., Urbanczyk, N., Wiesend, W.N., Murray, K.S.: Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils.-Biotechnol. Progr. 19: 273–280, 2003.Google Scholar
  176. Thumann, J., Grill, E., Winnacker, E.L., Zenk, M.H.: Reactivation of metal-requiring enzymes by phytochelatin-metal complexes.-FEBS Lett. 284: 66–69, 1991.PubMedGoogle Scholar
  177. Tian, J.L., Zhu, H.T., Yang, Y.A., He, Y.K.: Organic mercury tolerance, absorption and transformation in Spartina plants.-J. Plant Physiol. mol. Biol. (China) 30: 577–582, 2004.Google Scholar
  178. Tommasini, R., Vogt, E., Fromenteau, M., Hortensteiner, S., Matile, P., Amrhein, N., Martinoia, E.: An ABC transporter of Arabidopsis thaliana has both glutathione conjugate and chlorophyll catabolite transport activity.-Plant J. 13: 773–780, 1998.PubMedGoogle Scholar
  179. Tong, Y.P., Kneer, R., Zhu, Y.G.: Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation.-Trends Plant Sci. 9: 7–9, 2004.PubMedGoogle Scholar
  180. Van Assche, F., Clijster, H.: Effects of metal in enzyme activity in plants.-Plant Cell Environ. 13: 773–780, 1990.Google Scholar
  181. Van der Zaal, B.J., Neutboom, L.W., Pinars, J.E., Chardonnens, A.N., Schat, H., Verkleij, J.A., Hooykaas, P.J.: Over-expression of a novel Arabidopsis gene related to putative zinc transport genes from animals can lead to enhanced zinc resistance and accumulation.-Plant Physiol. 119: 1047–1056, 1999.PubMedGoogle Scholar
  182. Van Huysen, T., Abdel-Ghany, S., Hale, K.L., LeDuc, D., Terry, N., Pilon-Smits, E.A.H.: Over-expression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea.-Planta 218: 71–78, 2003.PubMedGoogle Scholar
  183. Van Huysen, T., Terry, N., Pilon-Smits, E.A.H.: Exploring the selenium phytoremediation potential of transgenic Indian mustard over-expressing ATP sulfurylase or cystathionine-γ-synthase.-Int. J. Phytoremed. 6: 111–118, 2004.Google Scholar
  184. Vatamaniuk, O.K., Mari, S., Lu, Y.P., Rea, P.A.: AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro construction.-Proc. nat. Acad. Sci. USA 96: 7110–7115, 1999.PubMedGoogle Scholar
  185. Verret, F., Gravot, A., Auroy, P., Leonhardt, N., David, P., Nussaume, L., Vavasseur, A., Richaud, P.: Over-expression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance.-FEBS Lett. 576: 306–312, 2004.PubMedGoogle Scholar
  186. Vinterhalter, B., Vinterhalter, D.: Nickel hyperaccumulation in shoot cultures of Alyssum narkgrafii.-Biol. Plant. 49: 121–124, 2005.Google Scholar
  187. Wagner, G.J.: Accumulation of cadmium in crop plants and its consequences to human health.-Adv. Agron. 51: 173–212, 1993.Google Scholar
  188. Wang, Q.R., Cui, Y.S., Liu, X. M., Dong, Y. T., Christie, P.: Soil contamination and uptake of heavy metals at polluted sites in China.-J. environ. Sci. Health. 38: 823–838, 2003.Google Scholar
  189. Wojcik, M., Tukiendorf, A.: Cadmium uptake, localization and detoxification in Zea mays.-Biol. Plant. 49: 237–245, 2005.Google Scholar
  190. Xue, S.G., Chen, Y.X., Reeves, R.D., Lin, Q., Fernando, D.R.: Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaeae).-Environ. Pollut. 131: 393–399, 2004.PubMedGoogle Scholar
  191. Zhang, Y.W., Tam, N.F.Y., Wong, Y.S.: Cloning and characterization of type 2 metallothionein-like gene from a wetland plant, Typha latifolia.-Plant Sci. 167: 869–877, 2004.Google Scholar
  192. Zhao, F.J., Dunham, S.J., McGrath, S.P.: Arsenic hyperaccumulation by different fern species.-New Phytol. 156: 27–31, 2002.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  1. 1.Department of ZoologyMahila Mahavidyalaya, Banaras Hindu UniversityVaranasiIndia
  2. 2.Department of BiochemistryNorth Eastern Hill UniversityShillongIndia

Personalised recommendations