Adachi, M., Kanamori, J., Masuda, T., Yagasaki, K., Kitamura, K., Mikami, B., Utsumi, S.: Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer.-Proc. nat. Acad. Sci. USA 100: 7395–7400, 2003.
PubMed
Article
CAS
Google Scholar
Adessi, C., Miege, C., Albrieux, C., Rabilloud, T.: Two-dimensional electrophoresis of membrane proteins: a current challenge for immobilized pH gradients.-Electrophoresis 18: 127–135, 2001.
Article
Google Scholar
Altenbach, S.B., Pearson, K.W., Leung, F.W. Sun, S.S.M.: Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine.-Plant mol. Biol. l8: 239–250, 1987.
Article
Google Scholar
Altenbach, S.B., Pearson, K.W., Meeker, G., Staraci, L.C., Sun, S.S.M.: Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants.-Plant mol. Biol. 13: 513–522, 1989.
PubMed
Article
CAS
Google Scholar
Chiu, W.-L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., Sheen, J.: Engineered GFP as a vital reporter in plants.-Curr. Biol. 6: 325–330, 1996.
PubMed
Article
CAS
Google Scholar
Draper, J., Scott, R. (ed.): The Isolation of Plant Nucleic Acids.-Blackwell Scientific Publications, London 1988.
Google Scholar
El-Shemy, H.A., Khalafalla, M.M., Nishizawa, K., Utsumi, S., Ishimoto, M.: Isolation of soybean plants with stable transgene expression by visual selection based on green fluorescent protein.-Mol. Breed. 14: 227–238, 2004.
Article
CAS
Google Scholar
Finer, J.J., Nagasawa, A.: Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill.].-Plant Cell Tissue Organ Cult. 15: 125–136, 1988.
Article
CAS
Google Scholar
Finer, J.J., McMullen, M.D.: Transformation of soybean via particle bombardment of embryogenic suspention culture tissue.-In vitro cell. dev. Biol. Plant 27: 175–182, 1991.
Google Scholar
Finnie, C., Melchior, S., Roepstorff, P., Svensson, B.: Proteome analysis of grain filling and seed maturation in barley.-Plant Physiol. 129: 1308–1319, 2002.
PubMed
Article
CAS
Google Scholar
Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells.-Exp. Cell Res. 50: 151–158, 1968.
PubMed
Article
CAS
Google Scholar
Gorg, A., Obermaier, C., Boguth, G., Csordas, A., Diaz, J., Madjar, J.: Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins.-Electrophoresis 18: 328–337, 1997.
PubMed
Article
CAS
Google Scholar
Hadi, M.Z., McMullen, M.D., Finer, J.J.: Transformation of 12 different plasmids into soybean via particle bombardment.-Plant Cell Rep. 15: 500–505, 1996.
Article
CAS
Google Scholar
Hajduch, M., Tanaka, H., Morinaka, Y., Otake, Y., Hakamura, H., Kayano, T., Kaga-Ban, Y.: Protein analysis of dwarfed transgenic rice plants overexpressing GA2-oxidase gene.-Biol. Plant. 49: 621–624, 2005.
Article
CAS
Google Scholar
Hajika, M., Takahashi, M., Sakai, S., Igita, M.: A new genotype of 7S globulin (β-conglycinin) detected in wild soybean (Glycine soja Sieb. et Zucc.).-Breed. Sci. 46: 385–386, 1996.
CAS
Google Scholar
Harada, K., Toyokawa, Y., Kitamura, K.: Genetic analysis of the most acidic 11S globulin subunit and related characters in soybean seeds.-Jap. J. Breed. 33: 23–30, 1983.
Google Scholar
Herman, E.M., Helm, R.M., Jung, R., Kinney, A.J.: Genetic modification removes an immunodominant allergen from soybean.-Plant Physiol. 132: 36–43, 2003.
PubMed
Article
CAS
Google Scholar
Hinchee, M.A.W., Conner-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato, S.J., Gasser, C.S., Fischhoff, D.A., Re, D.B., Fraley, R.T., Horsch, R.B.: Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer.-Bio/Technology 6: 915–922, 1988.
Article
CAS
Google Scholar
Hu, B., Esen, A.: Heterogeneity of soybean proteins: two-dimensional electrophoretic maps of three solubility fractions.-J. Agr. Food Chem. 30: 21–25, 1982.
Article
CAS
Google Scholar
Ikeda, T.M., Ohnishi, N., Nagamine, T., Oda, S., Hisatomi, T., Yano, H.: Identification of new puroindoline genotypes and their protein products among wheat cultivars.-J. cereal Sci. 4: 1–6, 2005.
Article
CAS
Google Scholar
Kim, C.S., Kamiya, S., Sato, T., Utsumi, S., Kito, M.: Improvement of nutritional value and functional properties of soybean glycinin by protein engineering.-Protein Eng. 3: 725–731, 1990.
PubMed
Article
CAS
Google Scholar
Kitamura, K., Davies, C.S., Nielsen, N.C.: Inheritance of alleles for Cgy1 and Gy4 storage protein genes in soybean.-Theor. appl. Genet. 68: 253–257, 1984.
Article
CAS
Google Scholar
Kitamura, Y., Arahira, M., Itoh, Y., Fukazawa, C.: The complete nucleotide sequence of soybean glycinin A2B1a gene spanning to another glycinin gene A1aB1b.-Nucl. Acids Res. 18: 4245, 1990.
PubMed
Article
CAS
Google Scholar
Koshiyama, I.: Chemical and physical properties of a 7S protein in soybean globulins.-Cereal Chem. 45: 394–404, 1968.
CAS
Google Scholar
Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head bacteriophage T4.-Nature 277: 680–685, 1970.
Article
Google Scholar
Li, H.Y., Zhu, Y.M., Chen, Q., Conner, R.L., Ding, X.D., Li, J., Zhang, B.B.: Production of transgenic soybean plants with two antifungal protein genes via Agrobacterium and particle bombardment.-Biol. Plant. 48: 367–374, 2004.
Article
CAS
Google Scholar
Maruyama, N., Mohamed Salleh, M.R., Takahashi, K., Yagasaki, K., Goto, H., Hontani, N., Nakagawa, S., Utsumi, S.: Structure-physicochemical function relationships of soybean beta-conglycinin heterotrimers.-J. Agr. Food Chem. 50: 4323–4326, 2002.
Article
CAS
Google Scholar
Mooney, B.P., Thelen, J.J.: High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification.-Phytochemistry 65: 1733–1744, 2004.
PubMed
Article
CAS
Google Scholar
Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture.-Physiol. Plant. 15: 473–497, 1962.
Article
CAS
Google Scholar
Natarajan, S., Xu, C., Caperna, T J., Garrett, W M.: Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins.-Anal. Biochem. 342: 214–220, 2005.
PubMed
Article
CAS
Google Scholar
Neuhoff, V., Arold, N., Taube, D., Ehrhardt, W.: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Blue G-250 and R-250.-Electrophoresis 9: 255–262, 1988.
PubMed
Article
CAS
Google Scholar
Nielsen, N.C.: Structure and complexity of the 11S polypeptides in soybean.-J. amer. Oil Chem. Soc. 62: 1680–1686, 1985.
Article
CAS
Google Scholar
Nordlee, J.A., Taylor, S.L., Townsend, J.A., Thomas, L.A., Bush, R.K.: Identification of a brazil-nut allergen in transgenic soybean.-New Eng. J. Med. 334: 688–692, 1996.
PubMed
Article
CAS
Google Scholar
Odanaka, H., Kaizuma, N.: Mutants on soybean storage proteins induced with gama-ray irradiation.-Jap. J. Breed. 39: 430–431, 1989.
Google Scholar
Ogawa, T., Tayama, E., Kitamura, K., Kaizuma, N.: Genetic improvement of seed storage proteins using three varient alleles of 7S globulin subunits in soybean.-Jap. J. Breed. 39: 137–147, 1989.
CAS
Google Scholar
Russel, D.R., Wallace, K.M., Bathe, J.H., Martinell, B.J., McCabe, D.E.: Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration.-Plant Cell Rep. 12: 165–169, 1993.
Article
Google Scholar
Saalbach, I., Pickardt, T., Machemehl, F., Saalbach, G., Schieder, O., Müntz, K.: A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes.-Mol. gen. Genet. 242: 226–236, 1994.
PubMed
Article
CAS
Google Scholar
Saalbach, I., Waddell, D., Pickardt, T., Schieder, O., Müntz, K.: Stable expression of the sulfur-rich 2S albumin gene in transgenic Vicia narbonensis increases the methionine content of seed.-J. Plant Physiol. 145: 674–681, 1995.
CAS
Google Scholar
Samoylov, V.M., Tucker, D.M., Parrott, W.A.: A liquid medium-based protocol for rapid regeneration from embryogenic soybean cultures.-Plant Cell Rep. 18: 49–54, 1998.
Article
CAS
Google Scholar
Sato, S., Newell, C., Kolacz, K., Tredo, L., Finer, J., Hinchee, M.: Stable transformation via particle bombardment in two different soybean regeneration systems.-Plant Cell Rep. 12: 408–413, 1993.
CAS
Google Scholar
Schroeder, H.E., Schotz, A.H., Wardley-Richardson, T., Spencer, D., Higgins, T.J.V.: Transformation and regeneration of two cultivars of pea (Pisum sativum L.).-Plant Physiol. 101: 751–757, 1993.
PubMed
Article
CAS
Google Scholar
Staswick, P.E., Hermodson, M.A., Nielsen, N.C.: Identification of the cystines which link the acidic and basic components of the glycinin subunits.-J. biol. Chem. 259: 13431–13435, 1984.
Google Scholar
Takahashi, K., Banaba, H., Kikuchi, A., Ito, M., Nakamura, S.: An iduced mutant line lacking the α-subunit of β-conglycinin in soybean (Glycine max (L.) Merrill).-Breed. Sci. 46: 251–255, 1994.
Google Scholar
Yagasaki, K., Kaizuma, N., KItamura, K.: Inheritance of glynicin subunits and characterization of glycinin molecules lacking the subunits in soybean (Glycine max (L.) Merr.).-Breed. Sci. 46: 11–15, 1996.
CAS
Google Scholar
Yamada, T., Teraishi, M., Hattori, K., Ishimoto, M.: Transformation of azuki bean by Agrobacterium tumefaciens.-Plant Cell Tissue Organ Cult. 64: 47–54, 2001.
Article
CAS
Google Scholar