Skip to main content

Improvement of protein quality in transgenic soybean plants

Abstract

Glycinin is one of the abundant storage proteins in soybean seeds. A modified Gy1 (A1aB1b) proglycinin gene with a synthetic DNA encoding four continuous methionines (V3-1) was connected between the hpt gene and the modified green fluorescent protein sGFP(S65T) gene, and a resultant plasmid was introduced into soybean by particle bombardment in order to improve nutritional value of its seeds. After the selection with hygromycin, the efficiency of gene introduction was evaluated. More than 60 % of the regenerated plants tolerant to hygromycin yielded the hpt and V3-1 fragment by polymerase chain reaction (PCR) analysis, and the expression of sGFP was detected in about 50 % of putative transgenic soybeans. Southern hybridization confirmed the presence of transgenes in T0 plants and the transgenic soybeans hybridized with the hpt and V3-1 genes were analyzed showed different banding patterns. Most of the transgenic plants were growing, flowering normally and produced seeds. Analysis of seed obtained from transgenic soybean plants expressing hpt and V3-1 genes showed higher accumulation of glycinin compared with non-transgenic plants. In addition, protein expression in transgenic soybean plants was observed by using 2D-electrophoresis.

This is a preview of subscription content, access via your institution.

Abbreviations

GFP:

green fluorescent protein

PCR:

polymerase chain reaction

References

  • Adachi, M., Kanamori, J., Masuda, T., Yagasaki, K., Kitamura, K., Mikami, B., Utsumi, S.: Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer.-Proc. nat. Acad. Sci. USA 100: 7395–7400, 2003.

    PubMed  Article  CAS  Google Scholar 

  • Adessi, C., Miege, C., Albrieux, C., Rabilloud, T.: Two-dimensional electrophoresis of membrane proteins: a current challenge for immobilized pH gradients.-Electrophoresis 18: 127–135, 2001.

    Article  Google Scholar 

  • Altenbach, S.B., Pearson, K.W., Leung, F.W. Sun, S.S.M.: Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine.-Plant mol. Biol. l8: 239–250, 1987.

    Article  Google Scholar 

  • Altenbach, S.B., Pearson, K.W., Meeker, G., Staraci, L.C., Sun, S.S.M.: Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants.-Plant mol. Biol. 13: 513–522, 1989.

    PubMed  Article  CAS  Google Scholar 

  • Chiu, W.-L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., Sheen, J.: Engineered GFP as a vital reporter in plants.-Curr. Biol. 6: 325–330, 1996.

    PubMed  Article  CAS  Google Scholar 

  • Draper, J., Scott, R. (ed.): The Isolation of Plant Nucleic Acids.-Blackwell Scientific Publications, London 1988.

    Google Scholar 

  • El-Shemy, H.A., Khalafalla, M.M., Nishizawa, K., Utsumi, S., Ishimoto, M.: Isolation of soybean plants with stable transgene expression by visual selection based on green fluorescent protein.-Mol. Breed. 14: 227–238, 2004.

    Article  CAS  Google Scholar 

  • Finer, J.J., Nagasawa, A.: Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill.].-Plant Cell Tissue Organ Cult. 15: 125–136, 1988.

    Article  CAS  Google Scholar 

  • Finer, J.J., McMullen, M.D.: Transformation of soybean via particle bombardment of embryogenic suspention culture tissue.-In vitro cell. dev. Biol. Plant 27: 175–182, 1991.

    Google Scholar 

  • Finnie, C., Melchior, S., Roepstorff, P., Svensson, B.: Proteome analysis of grain filling and seed maturation in barley.-Plant Physiol. 129: 1308–1319, 2002.

    PubMed  Article  CAS  Google Scholar 

  • Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells.-Exp. Cell Res. 50: 151–158, 1968.

    PubMed  Article  CAS  Google Scholar 

  • Gorg, A., Obermaier, C., Boguth, G., Csordas, A., Diaz, J., Madjar, J.: Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins.-Electrophoresis 18: 328–337, 1997.

    PubMed  Article  CAS  Google Scholar 

  • Hadi, M.Z., McMullen, M.D., Finer, J.J.: Transformation of 12 different plasmids into soybean via particle bombardment.-Plant Cell Rep. 15: 500–505, 1996.

    Article  CAS  Google Scholar 

  • Hajduch, M., Tanaka, H., Morinaka, Y., Otake, Y., Hakamura, H., Kayano, T., Kaga-Ban, Y.: Protein analysis of dwarfed transgenic rice plants overexpressing GA2-oxidase gene.-Biol. Plant. 49: 621–624, 2005.

    Article  CAS  Google Scholar 

  • Hajika, M., Takahashi, M., Sakai, S., Igita, M.: A new genotype of 7S globulin (β-conglycinin) detected in wild soybean (Glycine soja Sieb. et Zucc.).-Breed. Sci. 46: 385–386, 1996.

    CAS  Google Scholar 

  • Harada, K., Toyokawa, Y., Kitamura, K.: Genetic analysis of the most acidic 11S globulin subunit and related characters in soybean seeds.-Jap. J. Breed. 33: 23–30, 1983.

    Google Scholar 

  • Herman, E.M., Helm, R.M., Jung, R., Kinney, A.J.: Genetic modification removes an immunodominant allergen from soybean.-Plant Physiol. 132: 36–43, 2003.

    PubMed  Article  CAS  Google Scholar 

  • Hinchee, M.A.W., Conner-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato, S.J., Gasser, C.S., Fischhoff, D.A., Re, D.B., Fraley, R.T., Horsch, R.B.: Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer.-Bio/Technology 6: 915–922, 1988.

    Article  CAS  Google Scholar 

  • Hu, B., Esen, A.: Heterogeneity of soybean proteins: two-dimensional electrophoretic maps of three solubility fractions.-J. Agr. Food Chem. 30: 21–25, 1982.

    Article  CAS  Google Scholar 

  • Ikeda, T.M., Ohnishi, N., Nagamine, T., Oda, S., Hisatomi, T., Yano, H.: Identification of new puroindoline genotypes and their protein products among wheat cultivars.-J. cereal Sci. 4: 1–6, 2005.

    Article  CAS  Google Scholar 

  • Kim, C.S., Kamiya, S., Sato, T., Utsumi, S., Kito, M.: Improvement of nutritional value and functional properties of soybean glycinin by protein engineering.-Protein Eng. 3: 725–731, 1990.

    PubMed  Article  CAS  Google Scholar 

  • Kitamura, K., Davies, C.S., Nielsen, N.C.: Inheritance of alleles for Cgy1 and Gy4 storage protein genes in soybean.-Theor. appl. Genet. 68: 253–257, 1984.

    Article  CAS  Google Scholar 

  • Kitamura, Y., Arahira, M., Itoh, Y., Fukazawa, C.: The complete nucleotide sequence of soybean glycinin A2B1a gene spanning to another glycinin gene A1aB1b.-Nucl. Acids Res. 18: 4245, 1990.

    PubMed  Article  CAS  Google Scholar 

  • Koshiyama, I.: Chemical and physical properties of a 7S protein in soybean globulins.-Cereal Chem. 45: 394–404, 1968.

    CAS  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head bacteriophage T4.-Nature 277: 680–685, 1970.

    Article  Google Scholar 

  • Li, H.Y., Zhu, Y.M., Chen, Q., Conner, R.L., Ding, X.D., Li, J., Zhang, B.B.: Production of transgenic soybean plants with two antifungal protein genes via Agrobacterium and particle bombardment.-Biol. Plant. 48: 367–374, 2004.

    Article  CAS  Google Scholar 

  • Maruyama, N., Mohamed Salleh, M.R., Takahashi, K., Yagasaki, K., Goto, H., Hontani, N., Nakagawa, S., Utsumi, S.: Structure-physicochemical function relationships of soybean beta-conglycinin heterotrimers.-J. Agr. Food Chem. 50: 4323–4326, 2002.

    Article  CAS  Google Scholar 

  • Mooney, B.P., Thelen, J.J.: High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification.-Phytochemistry 65: 1733–1744, 2004.

    PubMed  Article  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture.-Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Natarajan, S., Xu, C., Caperna, T J., Garrett, W M.: Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins.-Anal. Biochem. 342: 214–220, 2005.

    PubMed  Article  CAS  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., Ehrhardt, W.: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Blue G-250 and R-250.-Electrophoresis 9: 255–262, 1988.

    PubMed  Article  CAS  Google Scholar 

  • Nielsen, N.C.: Structure and complexity of the 11S polypeptides in soybean.-J. amer. Oil Chem. Soc. 62: 1680–1686, 1985.

    Article  CAS  Google Scholar 

  • Nordlee, J.A., Taylor, S.L., Townsend, J.A., Thomas, L.A., Bush, R.K.: Identification of a brazil-nut allergen in transgenic soybean.-New Eng. J. Med. 334: 688–692, 1996.

    PubMed  Article  CAS  Google Scholar 

  • Odanaka, H., Kaizuma, N.: Mutants on soybean storage proteins induced with gama-ray irradiation.-Jap. J. Breed. 39: 430–431, 1989.

    Google Scholar 

  • Ogawa, T., Tayama, E., Kitamura, K., Kaizuma, N.: Genetic improvement of seed storage proteins using three varient alleles of 7S globulin subunits in soybean.-Jap. J. Breed. 39: 137–147, 1989.

    CAS  Google Scholar 

  • Russel, D.R., Wallace, K.M., Bathe, J.H., Martinell, B.J., McCabe, D.E.: Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration.-Plant Cell Rep. 12: 165–169, 1993.

    Article  Google Scholar 

  • Saalbach, I., Pickardt, T., Machemehl, F., Saalbach, G., Schieder, O., Müntz, K.: A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes.-Mol. gen. Genet. 242: 226–236, 1994.

    PubMed  Article  CAS  Google Scholar 

  • Saalbach, I., Waddell, D., Pickardt, T., Schieder, O., Müntz, K.: Stable expression of the sulfur-rich 2S albumin gene in transgenic Vicia narbonensis increases the methionine content of seed.-J. Plant Physiol. 145: 674–681, 1995.

    CAS  Google Scholar 

  • Samoylov, V.M., Tucker, D.M., Parrott, W.A.: A liquid medium-based protocol for rapid regeneration from embryogenic soybean cultures.-Plant Cell Rep. 18: 49–54, 1998.

    Article  CAS  Google Scholar 

  • Sato, S., Newell, C., Kolacz, K., Tredo, L., Finer, J., Hinchee, M.: Stable transformation via particle bombardment in two different soybean regeneration systems.-Plant Cell Rep. 12: 408–413, 1993.

    CAS  Google Scholar 

  • Schroeder, H.E., Schotz, A.H., Wardley-Richardson, T., Spencer, D., Higgins, T.J.V.: Transformation and regeneration of two cultivars of pea (Pisum sativum L.).-Plant Physiol. 101: 751–757, 1993.

    PubMed  Article  CAS  Google Scholar 

  • Staswick, P.E., Hermodson, M.A., Nielsen, N.C.: Identification of the cystines which link the acidic and basic components of the glycinin subunits.-J. biol. Chem. 259: 13431–13435, 1984.

    Google Scholar 

  • Takahashi, K., Banaba, H., Kikuchi, A., Ito, M., Nakamura, S.: An iduced mutant line lacking the α-subunit of β-conglycinin in soybean (Glycine max (L.) Merrill).-Breed. Sci. 46: 251–255, 1994.

    Google Scholar 

  • Yagasaki, K., Kaizuma, N., KItamura, K.: Inheritance of glynicin subunits and characterization of glycinin molecules lacking the subunits in soybean (Glycine max (L.) Merr.).-Breed. Sci. 46: 11–15, 1996.

    CAS  Google Scholar 

  • Yamada, T., Teraishi, M., Hattori, K., Ishimoto, M.: Transformation of azuki bean by Agrobacterium tumefaciens.-Plant Cell Tissue Organ Cult. 64: 47–54, 2001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. El-Shemy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Shemy, H.A., Khalafalla, M.M., Fujita, K. et al. Improvement of protein quality in transgenic soybean plants. Biol Plant 51, 277–284 (2007). https://doi.org/10.1007/s10535-007-0055-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-007-0055-3

Additional key words

  • genetic improvement
  • Glycine max
  • glycinin
  • particle bombardment
  • PCR
  • seed storage proteins