Skip to main content

Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars


The effects of drought on growth, protein content, lipid peroxidation, superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and polyphenol oxidase (PPO) were studied in leaves and roots of Sesamum indicum L. cvs. Darab 14 and Yekta. Four weeks after sowing, plants were grown under soil moisture corresponding to 100, 75, 50 and 25 % field capacity for next four weeks. Fresh and dry masses, and total protein content in leaves and roots decreased obviously under drought. However, several new proteins appeared and content of some proteins was affected. Measurement of malondialdehyde content in leaves and roots showed that lipid peroxidation was lower in Yekta than in Darab 14. Severe stress increased SOD, POX, CAT and PPO activities in leaves and roots, especially in Yekta. According to the present study Yekta is more resistant to drought than Darab 14.

This is a preview of subscription content, access via your institution.





field capacity






nitroblue tetrazolium




polyphenol oxidase


reactive oxygen species


sodium dodecyl-sulphate polyacrylamide gel electrophoresis


superoxide dismutase


thiobarbituric acid


trichloroacetic acid


  1. Abeles, F.B., Biles, C.L.: Characterization of peroxidase in lignifying peach fruit endocarp.-Plant Physiol. 95: 269–273, 1991.

    PubMed  CAS  Google Scholar 

  2. Aebi, H.: Catalases.-In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. 2. Pp. 673–684. Academic Press, New York 1974.

    Google Scholar 

  3. Agarwal, S., Pandey, V.: Antioxidant enzyme resposes to NaCl stress in Cassia angustifolia.-Biol. Plant. 48: 555–560, 2004.

    Article  CAS  Google Scholar 

  4. Ali, A., Kafkafi, U., Yamaguchi, I., Sugimoto, Y., Inanga, S.: Growth, transpiration, root-boron cytokinins and gibberellins, and nutrient compositional changes in sesame exposed to low root-zone temperature under different ratios of nitrate:ammonium supply.-J. Plant. Nutr. 23: 123–140, 2000.

    CAS  Google Scholar 

  5. Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and assay applicable to acrylamide gels.-Anal. Biochem. 44: 276–278, 1971.

    PubMed  Article  CAS  Google Scholar 

  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 255–260, 1976.

    Article  Google Scholar 

  7. Chen, W. P., Li, P.H., Chen, T.H.H.: Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L.-Plant Cell Environ. 23: 609–618, 2000.

    Article  CAS  Google Scholar 

  8. Creelman, R.A., Mason, H.G., Bensen, R.J., Boyer, J.S., Mullet, J.E.: Water deficit and abscisic acid causes inhibition of shoots versus root growth in soybean seedlings: Analysis of growth, sugar accumulation and gene expression.-Plant Physiol. 92: 205–214, 1990.

    PubMed  CAS  Google Scholar 

  9. Davis, B.J.: Disc electrophoresis. II. Method and application to human serum proteins.-Ann. New York Acad. Sci. USA 121: 404–427, 1964.

    Article  CAS  Google Scholar 

  10. Ghorbanli, M., Ebrahimzadeh, H., Sharifi, M.: Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean.-Biol. Plant. 48: 575–581, 2004.

    Article  CAS  Google Scholar 

  11. Giannopolitis, C.N., Ries, S.K.: Superoxidase dismutase. 1. Occurrence in higher plants.-Plant Physiol. 59: 309–314, 1977.

    PubMed  CAS  Article  Google Scholar 

  12. Hagar, H., Ueda, N., Shal, S.V.: Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury LLC-PK1 cells.-Amer. J. Physiol. 271: 209–215, 1996.

    Google Scholar 

  13. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189–198, 1968.

    PubMed  Article  CAS  Google Scholar 

  14. Jagtap, V., Bhargava, S.: Variation in the antioxidant metabolism of drought tolerant and drought susceptible varieties of Sorghum bicolor (L.) Moench. exposed to high light, low water and high temperature stress.-J. Plant Physiol. 145: 195–197, 1995.

    CAS  Google Scholar 

  15. Jiang, M., Zhang, J.: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.-Plant Cell Physiol. 42: 1265–1273, 2001.

    PubMed  Article  CAS  Google Scholar 

  16. Kukreja, S., Nandval, A.S., Kumar, N., Sharma, S.K., Sharma, S.K., Unvi, V., Sharma, P.K.: Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity.-Biol. Plant. 49: 305–308, 2005.

    Article  CAS  Google Scholar 

  17. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.-Nature 227: 680–65, 1970.

    PubMed  Article  CAS  Google Scholar 

  18. Núñez, M., Mazzafera, P., Mazorra, L.M., Siquera, W.J., Zullo, M. A.T.: Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl.-Biol. Plant. 47: 67–70, 2003/4.

    Article  Google Scholar 

  19. Ogbonnaya, C.I., Sarr, B., Brou, C., Diouf, O., Diop, N.N., Roy-Macauley, H.: Selection of cowpea genotypes in hydroponics, pots, and field for drought tolerance.-Crop Sci. 43: 1114–1120, 2003.

    Article  Google Scholar 

  20. Pattangual, W., Madore, M.: Water deficit effects on raffinose family oligosaccharide metabolism in Coleus.-Plant Physiol. 121: 998–993, 1999.

    Google Scholar 

  21. Ratnayaka, H.H., Molin, W.T., Sterling, T.M.: Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought.-J. exp. Bot. 54: 2293–2305, 2003.

    PubMed  Article  CAS  Google Scholar 

  22. Raymond, J., Pakariyathan, N., Azanza, J.L.: Purification and some properties of polyphenol oxidases from sunflowers seed.-Phytochemistry 34: 927–931, 1993.

    Article  CAS  Google Scholar 

  23. Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C.: Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes.-Biol. Plant. 49: 85–91, 2005.

    Article  CAS  Google Scholar 

  24. Scebba, F., Sebastiani, L., Vitagliano, C.: Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedling under cold acclimation.-Physiol. Plant. 104: 747–752, 1998.

    Article  CAS  Google Scholar 

  25. Schwanz, P., Picon, C., Vivin, P., Dreyer, E., Guehl, J., Polle, A.: Responses of antioxidative system to drought stress in pedunculate oak and maritime pine as modulated by elevated CO2.-Plant Physiol. 110: 393–402, 1996.

    PubMed  CAS  Google Scholar 

  26. Sergi, M., Alegre, L.: Drought-induced changes in redox state of α-tocopherol, ascorbate and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents.-Plant Physiol. 131: 1816–1825, 2003.

    Article  CAS  Google Scholar 

  27. Sgherri, C.L.M., Navari-Izzo, F.: Sunflower seedling subjected to increasing water deficit stress: oxidative stress and defence mechanisms.-Physiol. Plant. 93: 25–30, 1995.

    Article  CAS  Google Scholar 

  28. Shalata, A., Tal, M.: The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant reactive Lycopersicon pennelii.-Physiol. Plant. 104: 169–174, 1998.

    Article  CAS  Google Scholar 

  29. Smirnoff, N.: Plant resistance to environmental stress.-Curr. Opin. Biotechnol. 9: 214–219, 1998.

    PubMed  Article  CAS  Google Scholar 

  30. Sreenivasulu, N., Ramanjulu, S., Rmachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S., Sudhakar, C.: Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance.-Plant Sci. 141: 1–9, 1999.

    Article  CAS  Google Scholar 

  31. Srivalli, B., Sharma, G., Khanna-Chopra, R.: Antioxidative defence system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery.-Physiol. Plant. 119: 503–512, 2003.

    Article  CAS  Google Scholar 

  32. Upadhyaya, H., Panda, S.K.: Responses of Camellia sinensis to drought and rehydration.-Biol. Plant. 48: 597–600, 2004.

    Article  Google Scholar 

  33. Van Loon, L.C.: Tobacco polyphenol oxidase. A specific staining method indicating non-identify with peroxidase.-Phytochemistry 10: 503–507, 1971.

    Article  Google Scholar 

  34. Weiss, E.A.: Oilseed Crops.-Blackwell Science, Oxford 2000.

    Google Scholar 

  35. Wendel, J.F., Weeden, N.F.: Visualization and interpretation of plant isozymes.-In: Soltis, D.E., Soltis, P.S. (ed.): Isozyme in Plant Biology. Pp. 5–45. Chapman and Hall, London 1989.

    Google Scholar 

  36. Yordanova, R.Y., Kolev, K.G., Stoinova, Zh.G., Popova, L.P.: Changes in the leaf polypeptide patterns of barley plants exposed to soil flooding.-Biol. Plant. 48: 301–304, 2004.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. Fazeli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fazeli, F., Ghorbanli, M. & Niknam, V. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant 51, 98–103 (2007).

Download citation

Additional key words

  • catalase
  • malondialdehyde
  • peroxidase
  • polyphenol oxidase
  • Sesamum indicum
  • superoxide dismutase