Advertisement

Biologia Plantarum

, Volume 50, Issue 4, pp 688–692 | Cite as

Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis

Brief Communication

Abstract

Plants of Miscanthus sinensis (cv. Giganteus) were grown in hydroponics for three months in nutrient solution with 0, 2.2, 4.4 and 6.6 μM CdNO3. Growth parameters, catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities were analysed in leaves and roots collected after 1-and 3-month exposure. Dry biomass of all miscanthus organs was affected by Cd concentration both after 1-and 3-month exposure. No visible symptoms of Cd toxicity were observed in shoots and rhizomes of plants grown in presence of Cd. In contrast, roots became shorter and thicker and the whole root system more dense and compact already after one month of treatment with 6.6 μM Cd. The lower Cd concentration increased the enzymes activities after 3 months in leaves and only after 1-month in roots, while a decrease in activity was observed at higher Cd concentrations.

Additional keywords

catalase heavy metals oxidative stress peroxidases superoxide dismutase 

Abbreviations

APX

ascorbate peroxidase

CAT

catalase

POD

guaiacol peroxidase

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, H.: Catalase in vitro.-Methods Enzymol. 105: 121–126, 1984.PubMedCrossRefGoogle Scholar
  2. Arduini, I., Masoni, A., Ercoli, L., Mariotti, M.: Growth and cadmium uptake of Miscanthus sinensis as affected by cadmium.-Agr. Med. 133: 169–178, 2003.Google Scholar
  3. Arduini, I., Masoni, A., Mariotti, M., Ercoli, L.: Low cadmium application increase miscanthus growth and cadmium translocation-Environ. exp. Bot. 52: 153–164, 2004.CrossRefGoogle Scholar
  4. Astolfi, S., Zuchi, S., Passera, C.: Effects of cadmium on the metabolic activity of Avena sativa plants grown in soil or hydroponics culture.-Biol. Plant. 48: 413–418, 2004.CrossRefGoogle Scholar
  5. Baszynski, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., Tukendorf, A.: Photosynthetic activities of cadmium-treated tomato plants.-Physiol. Plant. 63: 293–298, 1980.Google Scholar
  6. Chance, B.,A., Maehly, C.: Assay of catalase and peroxidase.-In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Pp. 764–775. Academic Press, New York 1955.Google Scholar
  7. Chaoui, A., Mazhoudi, S., Ghorbal, M.H., El Ferjani, E.: Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.).-Plant Sci. 127:139–147, 1997.CrossRefGoogle Scholar
  8. Chen, G.X., Asada, K.: Ascorbate peroxidase in tea leaves: occurrence of two isoforms and the differences in their enzymatic properties.-Plant Cell Physiol. 30: 987–998, 1989.Google Scholar
  9. Chen, Y.X., He, Y.F., Luo, Y.M., Yu, Y.L., Lin, Q., Wong, M.H.: Physiological mechanism of plant roots exposed to cadmium.-Chemosphere 50: 789–793, 2003.PubMedCrossRefGoogle Scholar
  10. Clark, R.B.: Nutrient solution growth of sorghum and corn in mineral nutrition studies.-J. Plant Nutr. 5: 1039–1057, 1982.CrossRefGoogle Scholar
  11. Ercoli, L., Mariotti, M., Masoni, A., Bonari, E.: Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus.-Field Crops Res. 63: 3–11, 1999.CrossRefGoogle Scholar
  12. Gallego, S.M., Benavides, M.P., Tomaro, M.L.: Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress.-Plant Sci. 121: 151–159, 1996.CrossRefGoogle Scholar
  13. Hardyman, R.T., Jacoby, B.: Absorption and translocation of Cd in bush beans (Phaseolus vulgaris).-Physiol. Plant. 61: 670–674, 1984.CrossRefGoogle Scholar
  14. Himken, M., Lammel, J., Neukirchen, D., Czyionka-Krause, U., Olfs, H.W.: Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization.-Plant Soil 189: 117–126, 1997.CrossRefGoogle Scholar
  15. Kevrešan, S., Kiršek, S., Kandraç, J., Petrović, N., Kelemen, Dj.; Dynamics of cadmium distribution in the intercellular space and inside cells in soybean roots, stem and leaves-Biol. Plant. 46: 85–88, 2003.CrossRefGoogle Scholar
  16. Lozano-Rodriguez, E., Hernandez, L.E., Bonay, P., Carpena-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances.-J. exp. Bot. 48: 123–128, 1997.Google Scholar
  17. Madamanchi, N.R., Donahue, J.L., Cramer, C.L., Alscher, R.G., Pedersen, K.: Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide.-Plant mol. Biol. 26: 95–103, 1994.PubMedCrossRefGoogle Scholar
  18. Rivetta, A., Negrini, N., Cocucci, M.: Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination.-Plant Cell Environ. 20: 600–608, 1997.CrossRefGoogle Scholar
  19. Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., Del Rio, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants.-J. exp. Bot. 52: 2115–2126, 2001.PubMedGoogle Scholar
  20. Sanità di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants.-Environ. exp. Bot. 41: 105–130, 1999.CrossRefGoogle Scholar
  21. Schützendübel, A., Polle, A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.-J. exp. Bot. 53: 1351–1365, 2002.PubMedCrossRefGoogle Scholar
  22. Schwarz, H.: Miscanthus sinensis Giganteus production on several sites in Austria.-Biomass Bioenergy 5: 413–419, 1993.CrossRefGoogle Scholar
  23. Shaw, B.P.: Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus.-Biol. Plant. 37: 587–596, 1995.Google Scholar
  24. Skórzyńska-Polit E., Drążkiewicz, M., Krupa Z.: The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana.-Biol. Plant. 47: 71–78, 2003/4.CrossRefGoogle Scholar
  25. Šottníková, A., Lunáčková, L., Masarovičová, E., Lux, A., Streško, V.: Changes in the rooting and growth of willows and poplars induced by cadmiun.-Biol. Plant. 46: 129–131, 2003.CrossRefGoogle Scholar
  26. Streb, P., Michael-Knauf, A., Feierabend, J.: Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions.-Physiol. Plant. 88: 590–598, 1993.CrossRefGoogle Scholar
  27. Van Assche, F., Clijsters, H.: Effects of metals on enzyme activity in plants.-Plant Cell Environ. 13: 195–206, 1990.CrossRefGoogle Scholar
  28. Wagner, G.J.: Accumulation of cadmium in crop plants and its consequences to human health.-Adv. Agron. 51: 173–212, 1994.CrossRefGoogle Scholar
  29. Wu, F., Zhang, G., Dominy, P.: Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity.-Environ. Exp. Bot. 50: 67–78, 2003.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR, Praha 2006

Authors and Affiliations

  • F. Scebba
    • 1
  • I. Arduini
    • 2
  • L. Ercoli
    • 1
  • L. Sebastiani
    • 1
  1. 1.Scuola Superiore Sant’Anna di Studi Universitari e di PerfezionamentoPisaItaly
  2. 2.Dip.Agronomia e Gestione dell’AgroecosistemaPisaItaly

Personalised recommendations