Advertisement

Biologia Plantarum

, Volume 50, Issue 4, pp 653–659 | Cite as

Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots

  • E. GajewskaEmail author
  • M. Skłodowska
  • M. Słaba
  • J. Mazur
Original Paper

Abstract

Effect of two Ni concentrations (10 and 200 μM) on growth, Ni accumulation, chlorophyll and proline contents, relative water content (RWC) as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione S-transferase (GST) were studied in shoots of wheat plants. Treatments caused a considerable accumulation of Ni in the shoots. However, exposure of plants to 10 μM Ni did not lead to significant alterations in shoot growth except for a slight increase in fresh mass. The other parameters studied were not affected by treatment of plants with 10 μM Ni. In contrast, 200 μM Ni caused inhibition of shoot growth, a decline in RWC and chlorophyll content, accumulation of proline and occurrence of visible symptoms of Ni toxicity. The activities of SOD and CAT decreased in response to 200 μM Ni. Conversely, several-fold enhancements of POD and GST activities were observed following the 3rd day of 200 μM Ni treatment.

Additional key words

catalase glutathione S-transferase heavy metal peroxidase superoxide dismutase Triticum aestivum

Abbreviations

CAT

catalase

CDNB

1-chloro-2,4-dinitrobenzene

GSH

reduced glutathione

GST

glutathione S-transferase

NBT

nitroblue tetrazolium

POD

peroxidase

ROS

reactive oxygen species

RWC

relative water content

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alia, Pardha Saradhi, P.: Proline accumulation under heavy metal stress.-J. Plant Physiol. 138: 554–558, 1991.Google Scholar
  2. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.PubMedGoogle Scholar
  3. Atta-Aly, M.A.: Effect of nickel addition on the yield and quality of parsley leaves.-Sci. Hort. 82: 9–24, 1999.CrossRefGoogle Scholar
  4. Baccouch, S., Chaoui, A., El Ferjani, E.: Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots.-Plant Physiol. Biochem. 36: 689–694, 1998.CrossRefGoogle Scholar
  5. Bandurska, H.: Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? II. Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress.-Acta Physiol. Plant. 23: 483–490, 2001.Google Scholar
  6. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies.-Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  7. Boominathan, R., Doran, P.M.: Ni-induced oxidative stress in roots of the Ni hyper-accumulator, Alyssum bertolonii.-New Phytol. 156: 205–215, 2002.CrossRefGoogle Scholar
  8. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  9. Davis, D.G., Swanson, H.R.: Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.).-Environ. exp. Bot. 46: 95–108, 2001.CrossRefGoogle Scholar
  10. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 32: 93–101, 1981.Google Scholar
  11. Díaz, J., Bernal, A., Pomar, F., Merino, F.: Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification.-Plant Sci. 161: 179–188, 2001.CrossRefGoogle Scholar
  12. Distefano, S., Palma, J.M., McCarthy, I., del Río, L.A.: Proteolytic clevage of plant proteins by peroxisomal endoproteases from senescent pea leaves.-Planta 209: 308–313, 1999.PubMedCrossRefGoogle Scholar
  13. Dixit, V., Pandey, V., Shyam, R.: Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad).-J. exp. Bot. 52: 1101–1109, 2001.PubMedCrossRefGoogle Scholar
  14. Eskew, D.L., Welch, R.M., Cary, E.E.: Nickel: an essential micronutrient for legumes and possibly all higher plants.-Science 222: 621–623, 1983.PubMedGoogle Scholar
  15. Ewais, E.A.: Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds.-Biol. Plant. 39: 403–410, 1997.CrossRefGoogle Scholar
  16. Fargašová, A.: Root growth inhibition, photosynthetic pigments production, and metal accumulation in Synapis alba as the parameters for trace metals effect determination.-Bull. Environ. Contam. Toxicol. 61: 762–769, 1998.PubMedCrossRefGoogle Scholar
  17. Gabbrielli, R., Pandolfini, T., Espen, L., Palandri, M.R.: Growth, peroxidase activity and cytological modifications in Pisum sativum seedlings exposed to Ni2+ toxicity.-J. Plant Physiol. 155: 639–645, 1999.Google Scholar
  18. Gallego, S.M., Benavídes, M.P., Tomaro, M.L.: Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress.-Plant Sci. 121: 151–159, 1996.CrossRefGoogle Scholar
  19. Gaspar, T., Penel, C., Hagege, D., Greppin, H.: Peroxidases in plant growth, differentiation, and development processes.-In: Łobarzewski, J., Greppin, H., Penel, C., Gaspar, T. (ed.): Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Pp. 249–280. University M. Curie-Skłodowska, Lublin 1991.Google Scholar
  20. Gonnelli, C., Galardi, F., Gabbrielli, R.: Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa.-Physiol. Plant. 113: 507–514, 2001.CrossRefGoogle Scholar
  21. Gopal, R., Mishra, K.B., Zeeshan, M., Prasad, S.M., Joshi, M.M.: Laser-induced chlorophyll fluorescence spectra of mung plants growing under nickel stress.-Curr. Sci. 83: 880–884, 2002.Google Scholar
  22. Habig, W.H., Pabst, M.J., Jakoby, W.B.: Glutathione S-transferases. The first enzymatic step in mercapturic acid formation.-J. biol. Chem. 246: 7130–7139, 1974.Google Scholar
  23. Hartzendorf, T., Rolletschek, H.: Effect of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis.-Aquat. Bot. 69: 195–208, 2001.CrossRefGoogle Scholar
  24. Hsiao, T.C.: Plant responses to water stress.-Annu. Rev. Plant Physiol. 24: 519–570, 1973.CrossRefGoogle Scholar
  25. Madhava Rao, K.V., Sresty, T.V.S.: Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses.-Plant Sci. 157: 113–128, 2000.PubMedCrossRefGoogle Scholar
  26. Maehly, A.C., Chance, B.: The assay of catalases and peroxidases.-In: Glick, D. (ed.): Methods of Biochemical Analysis. Vol. 1. Pp. 357–425. Interscience Publishers Inc., New York 1954.Google Scholar
  27. Marrs, K.A.: The functions and regulation of glutathione S-transferases in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 127–158, 1996.PubMedCrossRefGoogle Scholar
  28. Marrs, K.A., Walbot, V.: Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses.-Plant Physiol. 113: 93–102, 1997.PubMedCrossRefGoogle Scholar
  29. Matysik, J., Alia, Bhalu, B., Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants.-Curr. Sci. 82: 525–532, 2002.Google Scholar
  30. McCord, J.M., Fridovich, I.: Superoxide dismutase. An enzymatic function for erythro-cuprein (hemocuprein).-J. biol. Chem. 244: 6049–6055, 1969.PubMedGoogle Scholar
  31. Minami, M., Yoshikawa, H.: A simplified assay method of superoxide dismutase activity for clinical use.-Clin. chim. Acta 92: 337–342, 1979.PubMedCrossRefGoogle Scholar
  32. Mocquot, B., Vangrosveld, J., Clijsters, H., Mench, M.: Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities.-Plant Soil 182: 287–300, 1996.Google Scholar
  33. Nagalakshmi, N., Prasad, M.N.V.: Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus.-Plant Sci. 160: 291–299, 2001.PubMedCrossRefGoogle Scholar
  34. Nakazawa, R., Kameda, Y., Ito, T., Ogita, Y., Michihata, R., Takenaga, H.: Selection and characterization of nickel-tolerant tobacco cells.-Biol. Plant. 48: 497–502, 2004.CrossRefGoogle Scholar
  35. Pandey, N., Sharma, C.P.: Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage.-Plant Sci. 163: 753–758, 2002.CrossRefGoogle Scholar
  36. Pandolfini, T., Gabbrielli, R., Comparini, C.: Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L.-Plant Cell Environ. 15: 719–725, 1992.CrossRefGoogle Scholar
  37. Parida, B.K., Chhibba, I.M., Nayyar, V.K.: Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition.-Sci. Hort. 98: 113–119, 2003.CrossRefGoogle Scholar
  38. Samarakoon, A.B., Rauser, W.E.: Carbohydrate levels and photoassimilate export from leaves of Phaseolus vulgaris exposed to excess cobalt, nickel, and zinc.-Plant Physiol. 63: 1165–1169, 1979.PubMedGoogle Scholar
  39. Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., Del Río, L.A.: Cadmium-induced changes in the growth and oxidative metabolism of pea plants.-J. exp. Bot. 52: 2115–2126, 2001.PubMedGoogle Scholar
  40. Schat, H., Sharma, S.S., Vooijs, R.: Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris.-Physiol. Plant. 101: 477–482, 1997.CrossRefGoogle Scholar
  41. Šimonovičová, M., Tamás, L., Huttová, J., Mistrík, I.: Effect of aluminium on oxidative stress related enzymes activities in barley roots.-Biol. Plant. 48: 261–266, 2004.CrossRefGoogle Scholar
  42. Smart, R.E., Bingham, G.E.: Rapid estimation of relative water content.-Plant Physiol. 53: 258–260, 1974.PubMedCrossRefGoogle Scholar
  43. Somashekaraiah, B.V., Padmaja, K., Prasad, A.R.K.: Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation.-Physiol. Plant. 85: 85–89, 1992.CrossRefGoogle Scholar
  44. Stobart, A.K., Griffiths, W.T., Ameen-Bukhari, I., Sherwood, R.P.: The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley.-Physiol. Plant. 63: 293–298, 1985.CrossRefGoogle Scholar
  45. Sudhakar, C., Lakshmi, A., Giridarakumar, S.: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity.-Plant Sci. 161: 613–619, 2001.CrossRefGoogle Scholar
  46. Tewari, R.K., Kumar, P., Sharma, P.N., Bisht, S.S.: Modulation of oxidative stress responsive enzymes by excess cobalt.-Plant Sci. 162: 381–388, 2002.CrossRefGoogle Scholar
  47. Tripathy, B.C., Bhatia, B., Mohanty, P.: Inactivation of chloroplast photosynthetic electron-transport activity by Ni2+.-Biochim. biophys. Acta 638: 217–224, 1981.CrossRefGoogle Scholar
  48. Vinterhalter, B., Vinterhalter, D.: Nickel hyperaccumulation in shoot cultures of Alyssum markgrafii.-Biol. Plant. 49: 121–124, 2005.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR, Praha 2006

Authors and Affiliations

  • E. Gajewska
    • 1
    Email author
  • M. Skłodowska
    • 1
  • M. Słaba
    • 2
  • J. Mazur
    • 3
  1. 1.Department of Plant Physiology and BiochemistryUniversity of ŁódźŁódźPoland
  2. 2.Department of Industrial Microbiology and BiotechnologyUniversity of ŁódźŁódźPoland
  3. 3.Laboratory of Computer and Analytical TechniquesUniversity of ŁódźŁódźPoland

Personalised recommendations