Skip to main content
Log in

Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeonpea roots as affected by soil moisture

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The plants of pigeonpea (Cajanus cajan L.) cv. H77-216 were subjected to moderate [soil moisture content (SMC) = 7.3 ± 0.5 %] and severe (SMC = 4.3 ± 0.5 %) drought by withholding the irrigation at vegetative stage (45 d after sowing). The control plants were maintained at SMC of 11.0 ± 0.5 %. Half of the stressed plants were re-irrigated and their recovery was studied after 2 d. Leaf water potential, osmotic potential, and relative water content of leaf and root decreased significantly while a sharp rise in proline and total soluble sugars contents were noticed. Drought induced a significant increase in 1-aminocyclopropane 1-carboxylic acid (ACC) content and ACC oxidase activity which caused a considerable increase in ethylene evolution. Malondialdehyde content and relative stress injury were increased under drought whereas reverse was true for ascorbic acid content. The membrane integrity of roots decreased during stress and recovered on rehydration. The specific activity of total superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione transferase decreased to 37 – 78 %, 17 – 62 %, 29 – 36 % and 57 – 79 % at moderate and severe drought, respectively. The increase in activity of catalase and peroxidase could not overcome the accumulation of H2O2 content in the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AA:

ascorbic acid

ACC:

1-aminocyclopropane-1-carboxylic acid

ASC:

ascorbate

CAT:

catalase

CD:

critical difference

GR:

glutathione reductase

GSH:

glutathione

GTase:

glutathione transferase

MDA:

malondialdehyde

POX:

peroxidase

ROS:

reactive oxygen species

RWC:

relative water content

SMC:

soil moisture content

SOD:

superoxide dismutase

TSS:

total soluble sugars

Ψs :

osmotic potential

Ψw :

water potential

References

  • Abeles, F.B., Morgan, P.W., Saltveit, M.E., Jr.: Ethylene in Plant Biology, 2nd Ed.-Academic Press, New York 1992.

    Google Scholar 

  • Aebi, H.E.: Catalase.-In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. III. Pp. 272–277. Verlag-Chemie Weinheim 1983.

    Google Scholar 

  • Bartoli, C.G., Simontacchi, M., Tambussi, E., Beltrano, J., Montalde, E., Puntarulo, S.: Drought and watering dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves.-J. exp. Bot. 50: 375–383, 1999.

    Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205–208, 1973.

    Article  CAS  Google Scholar 

  • Dubois, M., Dilles, K.A., Hamilton, J.K., Robnerts, P.A., Smith, F.: A colorimetric method for determination of sugars and related substances.-Anal. Chem. 28: 350–356, 1956.

    Article  CAS  Google Scholar 

  • Fearn, J.C., La Rue, T.A.: Ethylene evolution inhibitors restore nodulation of sym 5 mutants of Pisum sativum cv. 'sparkle'.-Plant Physiol. 96: 239–244, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase I. Occurrence in higher plants.-Plant Physiol. 59: 309–314, 1977.

    CAS  PubMed  Google Scholar 

  • Goldberg, D.M., Spooner, R.J.: Glutathione reductase-In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. III. Pp. 258–265, Verlag-Chemie, Weinheim 1983.

    Google Scholar 

  • Habig, W.H., Jakoby, W.B.: Assay for differentiation of glutathione-S-transferase-In: Jakoby, W.B. (ed.). Methods in Enzymology. Vol. 77. Pp. 398–405. Academic Press, New York 1981.

    Google Scholar 

  • Hare, P.D., Cress, W.A., Van Staden, J.: Dissecting the roles of osmolyte accumulation during stress.-Plant Cell Environ. 21: 535–553, 1998.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189–198, 1968.

    PubMed  CAS  Google Scholar 

  • Lowry, O.N., Rosenbrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with Folin phenol reagent.-J. biol. Chem. 193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  • Medici, L.O., Machado, A.T., Azevedo, R.A., Pimentel, C.: Glutamine synthase activity, relative water content and water potential in maize submitted to drought.-Biol. Plant. 47: 301–304, 2003/4.

    CAS  Google Scholar 

  • Miller, A.R., Pengelly, W.L.: Ethylene production by shoot forming and unorganized crown-gall tumor tissues of Nicotiana and Lycopersicon cultured in vitro.-Planta 161: 418–424, 1984.

    Article  CAS  Google Scholar 

  • Morabito, D., Guerrier, G.: The free oxygen radical scavenging enzymes and redox status in roots and leaves of Populus × euramericana in response to osmotic stress, desiccation and rehydration.-J. Plant Physiol. 157: 74–80, 2000.

    CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nayyer, H.: Variation in osmoregulation in differentially drought-sensitive wheat genotype involves calcium.-Biol. Plant. 47: 541–547, 2003/4.

    Google Scholar 

  • Nayyer, H., Waldia, D.P.: Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid.-Biol. Plant. 46: 275–279, 2003.

    Google Scholar 

  • Patterson, B.D., Machae, E.A., Ferguson, I.S.: Estimation of hydrogen peroxide in plant extracts using titanium (IV).-Anal. Biochem. 139: 487–492, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Polle, A.: Dissecting the superoxide dismutase-ascorbate glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis.-Plant Physiol. 126: 443–462, 2001.

    Article  Google Scholar 

  • Sairam, R.K., Veerabhadra Rao, K., Srivastava, G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.-Plant Sci. 163: 1037–1046, 2002.

    Article  CAS  Google Scholar 

  • Schopfer, P.: [Der Einfluss von Phytochrom auf die stationnaren Konzentrationen von Ascorbinsaure und Dehydroascorbinsaure beim Senfkeimling (Sinapis alba L.)].-Planta 69: 158–177, 1966 [In German]

    Article  CAS  Google Scholar 

  • Shannon, L.M., Kay, E., Law, J.Y.: Peroxidase isoenzyme from horse radish roots: Isolation and physical properties.-J. biol. Chem. 241: 2166–2172, 1966.

    PubMed  CAS  Google Scholar 

  • Weatherley, P.E.: Studies on the water relations of the cotton plant. I. The field measurement of water deficit in leaves.-New Phytol. 40: 81–97, 1950.

    Google Scholar 

  • Wright, P.R., Moran, J., Jessop, R.S.: Turgor maintenance by osmoregulation in Brassica napus and B. juncea under field conditions.-Ann. Bot. 80: 313–319, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nandwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, M., Nandwal, A.S., Kundu, B.S. et al. Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeonpea roots as affected by soil moisture. Biol Plant 50, 303–306 (2006). https://doi.org/10.1007/s10535-006-0026-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-006-0026-0

Additional key words

Navigation