Skip to main content
Log in

Role of enzymes of sucrose-starch conversion in seed sink strength in mung bean

  • Published:
Biologia Plantarum

Abstract

Changes in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), UDP-glucose pyrophosphorylase (UGPase), alkaline inorganic pyrophosphatase, 3-phosphoglycerate (3-PGA) phosphatase and amylases were monitored in relation to accumulation of starch in developing pods of mung bean (Vigna radiata L.). With the advancement in the seed development, the contents of starch rose with a concomitant fall in the branch of inflorescence and podwall after 10 d after flowering. The activity of UDPase in all the three pod tissues remained higher than the activity of AGPase showing it to be an important enzyme controlling carbon flux. The activity of alkaline inorganic pyrophosphatase in developing seed in contrast to 3-PGA phosphatase correlated with starch accumulation rate. Activity of β-amylase increased in all the pod tissues till maturity. It appears that the cooperative action of SuSy, UGPase and AGPase controls the efficient partitioning of sucrose into ADP glucose and thereby regulate the seed sink strength of the mung bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADPGlc:

ADP-glucose

AGPase:

ADP-glucose pyrophosphorylase

BI:

branch of inflorescence

DAF:

days after flowering

G1P:

glucose-1-phosphate

3-PGA:

3-phosphoglycerate

Pi:

inorganic phosphate

PW:

podwall

SuSy:

sucrose synthase

UGPase:

UDP-glucose pyrophosphorylase

UDPGlc:

UDP-glucose

References

  • Bhatia, S., Singh, R.: Calcium-mediated conversion of sucrose to starch in relation to the activities of amylases and sucrose-metabolizing enzymes in sorghum grains raised through liquid culture.-Indian J. Biochem. Biophys. 37: 135–139, 2000.

    PubMed  Google Scholar 

  • Bhullar, S.S., Singh, R., Sital, J.S., Bhatia, I.S.: Conversion of sucrose to starch in developing Pennisetum typhoides grain.-Physiol. Plant. 49: 248–254, 1985.

    Google Scholar 

  • Chopra, J., Kaur, N., Gupta, A.K.: Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mung bean reproductive structures.-Phytochemistry 53: 539–548, 2000.

    Article  PubMed  Google Scholar 

  • Chopra, J., Kaur, N., Gupta, A.K.: Changes in the activities of carbon metabolizing enzymes with pod development in lentil (Lens culinaris L.).-Acta Physiol. Plant. 25: 185–191, 2003.

    Google Scholar 

  • Denyer, K., Dunlap, F., Thorbjornsen, T., Keeling, P., Smith, A.M.: The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial.-Plant Physiol. 112: 779–785, 1996.

    Article  PubMed  Google Scholar 

  • Doan, D.N.P., Rudi, H., Olsen, O.-A.: The allosterically unregulated isoform of ADP glucose pyrophosphorylase from barley endosperm is most likely source of ADP glucose incorporated into endosperm starch.-Plant Physiol. 112: 965–975, 1999.

    Article  Google Scholar 

  • Doehlert, D.C., Duke, S.H.: Specific determination of α-amylase activity in crude plant extracts containing β-amylase.-Plant Physiol. 71: 229–234, 1983.

    Google Scholar 

  • Doehlert, D.C., Kuo, T.M.: Sugar metabolism in developing kernels of starch-deficient endosperm mutants of maize.-Plant Physiol. 92: 990–994, 1990.

    Google Scholar 

  • Duffus, C., Rosie, R.: Starch hydrolysing enzymes in the developing barley grain.-Planta 109: 153–160, 1973.

    Article  Google Scholar 

  • Giese, H., Hejgaard, J.: Synthesis of salt-soluble proteins in barley. Pulse-labeling study of grain filling in liquid-cultured detached spikes.-Planta 161: 172–177,1984.

    Article  Google Scholar 

  • Gomez-Casati, D.F., Iglesias, A.A.: ADP-glucose pyrophosphorylase from wheat endosperm. Purification and characterization of an enzyme with novel regulatory properties.-Planta 214: 428–434, 2002.

    Article  PubMed  Google Scholar 

  • Gross, P., apRees, T.: Alkaline inorganic pyrophosphatase and starch synthesis in amyloplasts.-Planta 167: 140–145, 1986.

    Article  Google Scholar 

  • Hara-Nishimura, I., Nishimura, M., Daussant, J.: Conversion of free β-amylase to bound β-amylase on starch granules in the barley endosperm during desiccation phase of seed development.-Protoplasma 134: 149–153, 1986.

    Article  Google Scholar 

  • Hylton, C., Smith, A.M.: The rb mutation of peas causes structural and regulatory changes in ADP-Glc phosphorylase from developing embryos.-Plant Physiol. 99: 1626–1634, 1992.

    Google Scholar 

  • Kaur, S., Gupta, A.K., Kaur, N.: Effect of kinetin on starch and sucrose metabolising enzymes in salt stressed chickpea seedlings.-Biol. Plant. 46: 67–72, 2003.

    Article  Google Scholar 

  • Kleczkowski, L.A.: Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants.-Phytochemistry 37: 1507–1515, 1994.

    Article  Google Scholar 

  • Kleczkowski, L.A.: Back to the drawing board: redefining starch synthesis in cereals.-Trends Plant Sci. 1: 363–364, 1996.

    Article  Google Scholar 

  • Kleczkowski, L.A.: A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation.-FEBS Lett. 448: 153–156, 1999.

    Article  PubMed  Google Scholar 

  • Kumar, R., Singh, R.: Alkaline inorganic pyrophosphatase from immature wheat grains.-Phytochemistry 22: 2405–2407, 1983.

    Article  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.R., Randall, R.J.: Protein measurement with Folin phenol reagent.-J. biol. Chem. 193: 265–275, 1951.

    PubMed  Google Scholar 

  • Minamikawa, T., Yamauchi, D., Wada, S., Takeuchi, H.: Expression of α-amylase in Phaseolus vulgaris and Vigna mungo plants.-Plant Cell Physiol. 33: 253–258, 1992.

    Google Scholar 

  • Muller-Rober, B., Kossman, J.: Approaches to influence starch quantity and starch quality in transgenic plants.-Plant Cell Environ. 17: 601–613, 1994.

    Google Scholar 

  • Muller-Rober, B.T., Kossmann, J., Hannah, L.C., Willmitzer, L., Sonnewald, U.: One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose.-Mol. gen. Genet. 224: 136–146, 1990.

    PubMed  Google Scholar 

  • Pathre, U.V., Sinha, A.K., Shirke, P.A., Rande, S.A.: Diurnal and seasonal modulation of sucrose phosphate synthase activity in leaves of Prosopis juliflora.-Biol. Plant. 48: 227–235, 2004.

    Article  Google Scholar 

  • Peoples, M.B., Atkins, C.A., Pate, J.S., Murray, D.R.: Nitrogen nutrition and metabolic interconversions of nitrogenous solutes in developing cowpea fruit.-Plant Physiol. 77: 382–388, 1985.

    Google Scholar 

  • Pozueta-Romero, J., Perata, P., Akazawa, T.: Sucrose-starch conversion in heterotrophic tissues of plants.-Crit. Rev. Plant Sci. 18: 489–525, 1999.

    Google Scholar 

  • Ren, H., Madison, J.T., Thompson, J.F.: Identification of an ethanol-soluble protein as β-amylase and its purification from soybean seeds.-Phytochemistry 33: 535–539, 1993a.

    Article  PubMed  Google Scholar 

  • Ren, H., Thompson, J.F., Madison, J.T.: Biochemical and physiological studies of soybean β-amylase.-Phytochemistry 33: 541–545, 1993b.

    Article  Google Scholar 

  • Rinderknecht, H., Wilding, P., Haverback, B.J.: A new method for determination of α-amylase.-Experentia 23: 805–805. 1967

    Google Scholar 

  • Robertson, D., Beech, I., Bolwell, G.P.: Regulation of the enzymes of UDP-sugar metabolism during differentiation of french bean.-Phytochemistry 39: 21–28, 1995.

    Article  Google Scholar 

  • Rudi, H., Doan, D.N.P., Olsen, O.-A.: A (His)6-tagged recombinant barley (Hordeum vulgare L.) endosperm ADPglucose pyrophosphorylase expressed in the baculovirus-insect cell system is insensitive to allosteric regulation by 3-phosphoglycerate and inorganic phosphate.-FEBS Lett. 419: 124–130, 1997.

    Article  PubMed  Google Scholar 

  • Sharma, N., Kaur, N., Gupta, A.K.: Effect of chlorocholine chloride sprays on carbohydrate composition and activities of sucrose metabolizing enzymes in potato (Solanum tuberosum L.).-Plant Growth Regul. 26: 97–103, 1998.

    Article  Google Scholar 

  • Singh, R., Asthir, B.: Free sugars in relation to starch accumulation in developing sorghum caryopsis.-Physiol. Plant. 74: 58–65, 1988.

    Google Scholar 

  • Sivak, M.N., Preiss, J.: Advances in Food and Nutrition Research. Starch: Basic Science to Biotechnology.-Academic Press, San Diego 1998.

    Google Scholar 

  • Thorbjornsen, T., Villand, P., Denyer, K., Olsen, O.-A., Smith, A.M.: Distinct isoforms of ADP glucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm.-Plant J. 10: 243–250, 1996.

    Article  Google Scholar 

  • Turner, J.F.: Starch synthesis and changes in uridine diphosphate glucose pyrophosphorylase and adenosine diphosphate glucose pyrophosphorylase in the developing wheat grain.-Aust. J. biol. Sci. 22: 1321–1327, 1969.

    Google Scholar 

  • Villareal, R.M., Juliano, B.O.: Some properties of 3-phosphoglycerate phosphatase from developing rice grain.-Plant Physiol. 59: 134–138, 1977.

    Google Scholar 

  • Weber, H., Heim, U., Borisjuk, L., Wobus, U.: Cell-type specific, coordinate expression of two ADP glucose pyrophosphorylase genes in relation to starch biosynthesis during seed development in Vicia faba L.-Planta 195: 352–361, 1995.

    Article  PubMed  Google Scholar 

  • Ziegler, P.: Cereal beta-amylases.-J. Cereal Sci. 29: 195–204, 1999.

    Article  Google Scholar 

  • Zrenner, R., Salanoubat, M., Willmitzer, L., Sonnewald, U.: Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.).-Plant J. 7: 97–107, 1995.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, J., Kaur, N. & Gupta, A.K. Role of enzymes of sucrose-starch conversion in seed sink strength in mung bean. Biol Plant 49, 561–566 (2005). https://doi.org/10.1007/s10535-005-0050-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-005-0050-5

Additional key words

Navigation