Biologia Plantarum

, Volume 49, Issue 4, pp 541–550 | Cite as

Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes

  • S. Agarwal
  • R. K. SairamEmail author
  • G. C. Srivastava
  • R. C. Meena


Abscisic acid (ABA) and salicylic acid (SA) were sprayed on leaves of wheat genotypes C 306 and Hira at 25 and 40 d after sowing under moderate water stress (−0.8 MPa) imposed by adding PEG-6000 in nutrient solution. ABA and SA increased the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in comparison to unsprayed control plants. Both ABA and SA treatments decreased the contents of hydrogen peroxide and thiobarbituric acid reactive substances, a measure of lipid peroxidation, compared to unsprayed plants. The beneficial effect of increase in antioxidant enzymes activity and decrease in oxidative stress was reflected in increase in chlorophyll and carotenoid contents, relative water content, membrane stability index, leaf area and total biomass over control plants. The lower concentrations of ABA (0.5 mM) and SA (1.0 mM) were generally more effective than higher concentrations.

Additional key words

ascorbate peroxidase catalase glutathione reductase hydrogen peroxide lipid peroxidation membrane stability index superoxide dismutase Triticum aestivum 



abscisic acid


ascorbate peroxidase








days after sowing




5,5-dithiobis-(2-nitrobenzoic acid)


ethylene diamine tetraacetic acid sodium salt


glutathione reductase


oxidized glutathione


membrane stability index


nitrobluetetrazolium chloride


reactive oxygen species


salicylic acid


superoxide dismutase


thiobarbituric acid reactive substances


trichloroacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H.: Catalase in vitro.-Methods Enzymol. 105: 121–126, 1984.PubMedGoogle Scholar
  2. Alscher, R.G., Donahue, J.L., Cramer, L.L.: Reactive oxygen species and antioxidants: relationships in green cells.-Physiol. Plant. 100: 224–233, 1997.CrossRefGoogle Scholar
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.Google Scholar
  4. Bowler, C., Montague, M.V., Inze, D.: Superoxide dismutase and stress tolerance.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 83–116, 1992.CrossRefGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for quantification of proteins utilizing the principle of protein dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedGoogle Scholar
  6. Chandler, P.M., Robertson, M.: Gene expression regulated by abscisic acid and its relation to stress tolerance.-Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 113–141, 1994.CrossRefGoogle Scholar
  7. Chandrasekar, V., Sairam, R.K, Srivastava, G.C.: Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress.-J. Agron. Crop Sci. 185: 219–227, 2000.CrossRefGoogle Scholar
  8. Chen, Z., Silva, H., Klessig, R.F.: Active oxygen species in the induction of plant systemic acquired resistance by SA.-Science 262: 1883–1886, 1993.Google Scholar
  9. Clark, S.F., Guy, P.L, Burrit, D.J., Jameson, P.E.: Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment.-Physiol. Plant. 114: 157–164, 2002.CrossRefPubMedGoogle Scholar
  10. Conrath, U., Chen, Z.X., Ricigliano, J.R., Klessig, D.F.: Two inducers of plant defense responses, 2,6-dichloro-isinicotinic acid and salicylic acid, inhibit catalase activity in tobacco.-Proc. nat. Acad. Sci. USA 92: 7143–7147, 1995.PubMedGoogle Scholar
  11. Dat, J.F., Foyer, C.H., Scott, I.M.: Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings.-Plant Physiol. 118: 1455–1461, 1998.CrossRefPubMedGoogle Scholar
  12. Davidson, J.E., Whyte, B., Bissinger, P.H., Schiestl, R.H.: Oxidative stress is involved in heat induced cell death in Saccharomyces cerevisiae.-Proc. nat. Acad. Sci. USA 93: 5116–5121, 1996.CrossRefPubMedGoogle Scholar
  13. Davies, K.J.A.: Protein damage and degradation by oxygen radicals. I. General aspects.-J. biol. Chem. 262: 9895–9901, 1987.PubMedGoogle Scholar
  14. Dhindsa, R.A., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 126: 93–101, 1981.Google Scholar
  15. Durner, J., Klessig, D.F.: Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, 2 inducers of plant defense responses.-Proc. nat. Acad. Sci. USA 92: 11312–11316, 1995.PubMedGoogle Scholar
  16. Elstner, E.F.: Metabolism of activated oxygen species.-In: Davies, D.D. (ed.): The Biochemistry of Plants: Biochemistry of Metabolism. Vol. 11. Pp. 253–315. Academic Press, San Diego 1986.Google Scholar
  17. Fridovich, I.: Biological effects of superoxide radical.-Arch. Biochem. Biophys. 247: 1–11, 1986.CrossRefPubMedGoogle Scholar
  18. Giraudat, J., Parcy, F., Bertauche, N., Gosti, F., Leug, J., Morris, P.C., Bouvier-Durand, M., Vartanian, N.: Current advances in abscisic acid action and signaling.-Plant mol. Biol. 26: 1557–1577, 1994.CrossRefPubMedGoogle Scholar
  19. Gong, M., Li, Y.J., Chen, S.Z.: Abscisic acid induced thermo tolerance in maize seedlings is mediated by Ca2+ and associated with antioxidant systems.-J. Plant Physiol. 153: 488–496, 1998.Google Scholar
  20. Hartung, W., Wilkinson, S., Davies W.: Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell.-J. exp. Bot. 49: 361–367, 1998.CrossRefGoogle Scholar
  21. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189–198, 1968.CrossRefPubMedGoogle Scholar
  22. Hiscox, J.D., Israelstam, G.F.: A method for extraction of chloroplast from leaf tissue without maceration.-Can. J. Bot. 57: 1332–1334, 1979.Google Scholar
  23. Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., Hartung, W.: The exodermis-a variable apoplastic barrier.-J. exp. Bot. 52: 2245–2264, 2001.CrossRefPubMedGoogle Scholar
  24. Hose, E., Steudle, E., Hartung, W.: Abscisic acid and hydraulic conductivity of maize roots. A root-and cell pressure probe study.-Planta 211: 874–882, 2000.CrossRefPubMedGoogle Scholar
  25. Imlay, J.A., Linn, S.: DNA damage and oxygen radical toxicity.-Science 240: 1302–1309, 1988.PubMedGoogle Scholar
  26. Janda, T., Szalai, G., Tari, I., Paldi, E.: Hydroponic treatment with salicylic acid decrease the effects of chilling injury in maize (Zea mays L.) plants.-Planta 208: 175–180, 1999.CrossRefGoogle Scholar
  27. Jiang, M.Y., Zhang, J.H.: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.-Plant Cell Physiol. 4: 1265–1273, 2001.CrossRefGoogle Scholar
  28. Jiang, M.Y., Zhang, J.H.: Role of abscisic acid in water stress induced antioxidant defense in leaves of maize seedlings.-Free Radical Res. 36: 1001–1015, 2002.CrossRefGoogle Scholar
  29. Kang, H.M., Saltveit, M.E.: Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid.-Physiol. Plant. 115: 571–576, 2002.CrossRefPubMedGoogle Scholar
  30. Kauss, H., Jeblick, W.: Influence of salicylic acid on the induction of competence for H2O2 elicitation.-Plant Physiol. 111: 753–763, 1996.Google Scholar
  31. Larkindale, J., Knight, M.R.: Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid.-Plant Physiol. 128: 682–695, 2002.CrossRefPubMedGoogle Scholar
  32. Lichtenthaler, H.K., Wellburn, W.R.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.-Biochem. Soc. Trans. 11: 591–592, 1983.Google Scholar
  33. Menconi, M., Sgherri, C.L.M., Pinzino, C., Navari-Izzo, F.: Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme.-J. exp. Bot. 46: 1123–1130, 1995.Google Scholar
  34. Molina, A., Bueno, P., Marlin, M.C., Rodriguez-Rosales, M.P., Belver, A., Venema, K., Danaire, J.P.: Involvement of endogenous salicylic acid content lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl.-New Phytol. 156: 409–415, 2002.CrossRefGoogle Scholar
  35. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  36. Polle, A., Rennenberg, H.: Significance of antioxidants in plant adaptation to environmental stress.-In: Mansfield, T., Fowden, L., Stoddard, F. (ed.): Plant Adaptation to Environmental Stress. Pp. 263–273. Chapman and Hall, London 1993.Google Scholar
  37. Ranieri, A., Castagna, A., Amoroso, S., Nali, C., Lorenzini, G., Soldatini, G.F.: Ascorbate levels and ascorbate peroxidase activation in two differently sensitive poplar clones as a result of ozone fumigation.-In: De Kok, L.J., Stulen, I. (ed.): Responses of plant metabolism to air pollution and global change. Pp. 435–438. Backhuys Publishers, Leiden 1998.Google Scholar
  38. Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., Watkins, C.B.: Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2.-Plant Physiol. 115: 137–149, 1997.CrossRefPubMedGoogle Scholar
  39. Sairam, R.K.: Effect of moisture stress on physiological activities of two contrasting wheat genotypes.-Indian J. exp. Biol. 32: 594–593, 1994.Google Scholar
  40. Sairam, R.K., Chandrasekhar, V., Srivastava, G.C.: Comparison of hexaploid and tetraploid wheat cultivars in their response to water stress.-Biol. Plant. 44: 89–94, 2001.CrossRefGoogle Scholar
  41. Sairam, R.K., Deshmukh, P.S., Saxena, D.C.: Role of antioxidant systems in wheat genotypes tolerance to water stress.-Biol. Plant. 41: 384–394, 1998.CrossRefGoogle Scholar
  42. Sairam, R.K., Rao, K.V., Srivastava, G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.-Plant Sci. 163: 1037–1046, 2002.CrossRefGoogle Scholar
  43. Sairam, R.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress.-Plant Sci. 162: 897–904, 2002.CrossRefGoogle Scholar
  44. Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C.: Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes.-Biol. Plant. 49: 85–91, 2005.CrossRefGoogle Scholar
  45. Sairam, R.K., Srivastava, G.C., Saxena, D.C.: Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes.-Biol. Plant. 43: 245–251, 2000.CrossRefGoogle Scholar
  46. Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid).-Anal. Biochem. 175: 408–413, 1988.CrossRefPubMedGoogle Scholar
  47. Tenhaken, R., Rubel, C.: Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor.-Plant Physiol. 115: 291–298, 1997.PubMedGoogle Scholar
  48. Weatherley, P.E.: Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves.-New Phytol. 49: 81–87, 1950.Google Scholar
  49. Yalpani, N., Enyedi, A.J., Leon, J., Raskin, I.: Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis related proteins and virus resistance in tobacco.-Planta 193: 372–376, 1994.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2005

Authors and Affiliations

  • S. Agarwal
    • 1
  • R. K. Sairam
    • 1
    Email author
  • G. C. Srivastava
    • 1
  • R. C. Meena
    • 1
  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations