Skip to main content
Log in

Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In the present work, the removal of Cr (VI), Cd (II) and Pb (II) at 50 mg/L of each metal ion concentration was investigated by Microbacterium paraoxydans strain VSVM IIT(BHU). The heavy metal binding on the bacterial cell surface was confirmed through X-ray photoelectron spectroscopy and energy dispersive X-ray. X-ray photoelectron spectroscopy analysis also confirmed the reduction of Cr (VI) to Cr (III). Heavy metal removal dynamics was investigated by evaluating dimensionless, and the value of Nk (9.49 × 10–3, 9.92 × 10–3 and 1.23 × 10–2 for Cr (VI), Cd (II) and Pb (II) ions) indicated that the removal of heavy metals by bacterial isolate was mixed diffusion and transfer controlled. It was found that both the experimental and predicted values for isolated bacterial strain coincided with each other with a good R2 value in the L-M Algorithm range of 0.94–0.98 for the ternary metal ion system. The bacterial isolate presented a maximum heavy metal ion removal efficiency of 91.62% Cr (VI), 89.29% Pb (II), and 83.29% Cd (II) at 50 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbas SZ, Rafatullah M, Ismail N, Lalung J (2014) Isolation, identification, and characterization of cadmium resistant pseudomonas sp. M3 from industrial wastewater. J Waste Manage 2014:160398

    Google Scholar 

  • Ahmad MF, Haydar S, Bhatti AA, Bari AJ (2014) Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Bioch Eng J 84:83–90

    CAS  Google Scholar 

  • Aranda-Garcia E, Cristiani-Urbina E (2020) Hexavalent chromium removal and total chromium biosorption from aqueous solution by Quercus crassipes acorn shell in a continuous up-flow fixed-bed column: influencing parameters, kinetics, and mechanism. PLoS ONE 15:e0227953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnot JA, Arnot MI, Mackay D, Couillard Y, MacDonald D, Bonnell M, Doyle P (2010) Molecular size cutoff criteria for screening bioaccumulation potential: fact or fiction? Integr Environ Assess Manage 6:210–224

    CAS  Google Scholar 

  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:227–245

    Google Scholar 

  • Balzano S, Sardo A, Blasio M, Chahine TB, Dell AF, Sansone C, Brunet C (2020) Microalgal metallothioneins and phytochelatins and their potential use in bioremediation. Front Microbiol 11:517

    PubMed  PubMed Central  Google Scholar 

  • Banerjee G, Pandey S, Ray AK, Kumar R (2015) Bioremediation of heavy metals by a novel bacterial strain enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut 226:91

    Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci USA 115:6506–6511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batta N, Subudhi S, Lal B, Devi A (2013) Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity. Indian J Exp Biol 51:1004–1011

    CAS  PubMed  Google Scholar 

  • BeersJr RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB (2012) Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int J Environ Sci Technol 9:433–440

    CAS  Google Scholar 

  • Bois L, Bonhomme A, Ribes A, Pais B, Raffin G, Tessier F (2003) Functionalized silica for heavy metal ions adsorption. Colloids Surf A 221:221–230

    CAS  Google Scholar 

  • Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation-the prospects for practical applications. Environ Int 36:299–307

    CAS  PubMed  Google Scholar 

  • Dabir A, Heidari P, Ghorbani H, Ebrahimi A (2019) Cadmium and lead removal by new bacterial isolates from coal and aluminum mines. Int J Environ Sci Technol 16:8297–8304

    CAS  Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2013) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121

    PubMed  Google Scholar 

  • Dave S, Bhatt N (2018) Biotransformation of Cr (VI) by newly invented bacterial consortium SN6. J Pure Appl Microbiol 12:1375–1384

    CAS  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    PubMed  PubMed Central  Google Scholar 

  • Elahi A, Ajaz M, Rehman A, Vuilleumier S, Khan Z, Hussain SZ (2019) Isolation, characterization, and multiple heavy metal-resistant and hexavalent chromium-reducing Microbacterium testaceum B-HS2 from tannery effluent. J King Saud Univ Agric Sci 31:1437–1444

    Google Scholar 

  • Elahi A, Arooj I, Bukhari DA, Rehman A (2020) Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol 104:3729–3743

    CAS  PubMed  Google Scholar 

  • El-Naggar NE, El-Khateeb AY, Ghoniem AA, El-Hersh MS, Saber WIA (2020) Innovative low-cost biosorption process of Cr6+ by Pseudomonas alcaliphila NEWG-2. Sci Rep 10:14043–14061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing JF, Janero DR (1995) Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232:243–248

    CAS  PubMed  Google Scholar 

  • Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y, Wei G (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59

    CAS  PubMed  Google Scholar 

  • Ferri JK, Stebe KJ (2000) Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv Colloid Interface Sci 85:61–97

    CAS  PubMed  Google Scholar 

  • Gao M, Wang M, Zhang YC, Zou XL, Xie LQ, Hu HY, Xu J, Gao JL, Sun JG (2013) Microbacterium neimengense sp. nov., isolated from the rhizosphere of maize. Int J Syst Evol Microbiol 63:236–240

    CAS  PubMed  Google Scholar 

  • Garg SK, Tripathi M, Srinath T (2012) Strategies for chromium bioremediation of tannery effluent. Rev Environ Contam Toxicol 217:75–140

    CAS  PubMed  Google Scholar 

  • Garg SK, Tripathi M, Singh SK, Singh A (2013) Pentachloro phenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (1050): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res 20:2288–2304

    CAS  Google Scholar 

  • Ge W, Zamri D, Mineyama H, Valix M (2011) Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorption 17:901–910

    CAS  Google Scholar 

  • Ghosh A, Sinha K (2015) Optimization of reduction of copper using Stenotrophomonas maltophilia PD2 biomass and artificial neural network modeling. Environ Eng Manage J 14:37–44

    Google Scholar 

  • Goksungur Y, Uren S, Guven U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 96:103–109

    PubMed  Google Scholar 

  • Goswami L, Manikandan NA, Pakshirajan K, Pugazhenthi G (2017) Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 7:37–45

    PubMed  PubMed Central  Google Scholar 

  • Gupta P, Diwan B (2016) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep (amst) 13:58–71

    PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hedayatkhah A, Cretoiu MS, Emtiazi G, Stal LJ, Bolhuis H (2018) Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production. J Environ Manage 227:313–320

    CAS  PubMed  Google Scholar 

  • Hossan S, Hossain S, Islam MR, Kabir MH, Ali S, Islam MS, Imran KM, Moniruzzaman M, Mou TJ, Parvez AK, Mahmud ZH (2020) Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. Int J Environ Res Public Health 17:6013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Pan J, Zheng L (2001) Removal of heavy metals from aqueous solutions using bacteria. J Shanghai Jiaotong Univ (sci) 5:253–259

    Google Scholar 

  • Humphries AC, Nott KP, Hall LD, Macaskie LE (2005) Reduction of Cr (VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol Bioeng 90:589–596

    CAS  PubMed  Google Scholar 

  • Ianeva OD (2009) Mechanisms of bacteria resistance to heavy metals. Mikrobiol Z 71:54–65

    CAS  PubMed  Google Scholar 

  • Ibrahim ASS, El-Tayeb AM, Elbadawi BY, Al-Salamah AA, Antranikian G (2012) Hexavalent chromate reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by copper-dependent membrane-associated Cr (VI). Extremophiles 16:659–668

    CAS  PubMed  Google Scholar 

  • Imaga CC, Abia AA (2015) Adsorption kinetics and mechanisms of Ni2+ sorption using carbonized and modified sorghum (Sorghum bicolor) hull of two pore sizes (150 µm and 250 µm): a comparative study. Int J Chem Stud 2:59–68

    Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70

    CAS  PubMed  Google Scholar 

  • Jiang J, Pan C, Xiao A, Yang X, Zhang G (2017) Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. 3 Biotech 7:5

    PubMed  PubMed Central  Google Scholar 

  • Joos P, Serrien G (1989) Adsorption kinetics of lower alkanols at the air/water interface: effect of structure makers and structure breakers. J Colloid Interface Sci 127:97–103

    CAS  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69

    CAS  PubMed  Google Scholar 

  • Khadim HJ, Ammar SH, Ebrahim SE (2019) Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil. Environ Technol Innovation 14:100315

    Google Scholar 

  • Khan T, Mustafa MRU, Isa MH, Manan TSBA, Ho YC, Lim JW, Yusof NZ (2017) Artificial Neural Network (ANN) for modelling adsorption of lead (Pb (II)) from aqueous solution. Water Air Soil Pollut 228:426

    Google Scholar 

  • Kibami D, Pongerner C, Rao KS, Sinha D (2017) Surface characterization and adsorption studies of Bambusa bulgaris-a low cost adsorbent. J Mech Eng Sci 8:2494–2505

    CAS  Google Scholar 

  • Kim Y, Kwon S, Roh Y (2021) Effect of divalent cations (Cu, Zn, Pb, Cd, and Sr) on microbially induced calcium carbonate precipitation and mineralogical properties. Front Microbiol 12:763–774

    Google Scholar 

  • Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, Lushchak VI (2010) Chromium effects on free radical processes in goldfish tissues: comparison of Cr (III) and Cr (VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol C: Toxicol Pharmacol 152:360–370

    PubMed  Google Scholar 

  • Kumar MS, Praveenkumar R, Ilavarasi A, Rajeshwari K, Thajuddin N (2013) Biochemical changes of fresh water cyanobacteria Dolichospermum flos-aquae NTMS07 to chromium-induced stress with special reference to antioxidant enzymes and cellular fatty acids. Bull Environ Contam Toxicol 90:730–735

    CAS  PubMed  Google Scholar 

  • Labied R, Benturki O, Hamitouche AYE, Donnot A (2018) Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study. Adsorpt Sci Technol 36:1066–1099

    CAS  Google Scholar 

  • Lazarova N, Krumova E, Stefanova T, Georgieva N, Angelova M (2014) The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure. Biotechnol Biotechnol Equip 28:855–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li MH, Gao XY, Li C, Yang CL, Fu CA, Liu J, Wang R, Chen LX, Lin JQ, Liu XM, Lin JQ, Pang X (2020) Isolation and identification of chromium reducing Bacillus cereus species from chromium-contaminated soil for the biological detoxification of chromium. Int J Environ Res Public Health 17:2118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Q, Tang J, Wang H, Yang W, He L, Wang Y, Yang Z (2020) Dynamic proteome responses to sequential reduction of Cr(VI) and adsorption of Pb(II) by Pannonibacter phragmitetus BB. J Hazard Mater 386:121988–121997

    CAS  PubMed  Google Scholar 

  • Liu Z, Wu Y, Lei C, Liu P, Gao M (2012) Chromate reduction by a chromate-resistant bacterium Microbacterium sp. World J Microbiol Biotechnol 28:1585–1592

    CAS  PubMed  Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP (2009a) Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem Rev 109:4644–4681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Jacobsen FE, Giedroc DP (2009b) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109:4644–4681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMMA (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: bioremediation viewpoint. Egyp J Aquat Res 43:65–74

    Google Scholar 

  • Nancharaiah YV, Dodge C, Venugopalan VP, Narasimhan SV, Francis AJ (2010) Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes. Appl Environ Microbiol 76:2433–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nath S, Paul P, Roy R, Bhattacharjee S, Deb B (2019) Isolation and identification of metal-tolerant and antibiotic-resistant bacteria from soil samples of Cachar district of Assam. India SN Appl Sci 1:727

    Google Scholar 

  • Oh JY, Song H, Shin WS, Choi SJ, Kim YH (2007) Effect of amorphous silica and silica sand on removal of chromium (VI) by zero-valent iron. Chemosphere 66:858–865

    CAS  PubMed  Google Scholar 

  • Oyetibo GO, Ilori MO, Obayori OS, Amund OO (2013) Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage. Environ Monit Assess 185:6809–6818

    CAS  PubMed  Google Scholar 

  • Park D, Lim SR, Yun YS, Park JM (2007) Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70:298–305

    CAS  PubMed  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A (2015) Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J Environ Sci Health Part A 50:1136–1147

    CAS  Google Scholar 

  • Rajivgandhi G, Ramachandran G, Chackaravarthi G, Maruthupandy M, Quero F, Chelliah CK, Manoharan N, Alharbi NS, Kadaikunnan S, Khaled JM, Li WJ (2022) Metal tolerance and biosorption of Pb ions by Bacillus cereus RMN 1 (MK521259) isolated from metal contaminated sites. Chemosphere 308(Pt 1):136270

    CAS  PubMed  Google Scholar 

  • Reis-Mansur MCPP, Cardoso-Rurr JS, Silva JVMA, de Souza GR, Cardoso VS, Mansoldo FRP, Pinheiro Y, Schultz J, Balottin LBL, da Silva AJR, Lage C, dos Santos EP, Rosado AS, Bea A (2019) Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci Rep 9:9554

    PubMed  PubMed Central  Google Scholar 

  • Reuveni R, Shimoni M, Karchi Z, Kuc J (1992) Peroxidase activity as a biochemical marker for resistance of muskmelon Cucumis melo to Pseudopernospora cubensis. Phytopathology 82:749–753

    CAS  Google Scholar 

  • Saha R, Mukherjee K, Saha I, Ghosh A, Ghosh SK, Saha B (2013) Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res Chem Intermed 39:2245–2257

    CAS  Google Scholar 

  • Sarangi A, Krishnan C (2008) Comparison of in vitro Cr (VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–4137

    CAS  PubMed  Google Scholar 

  • Shamim K, Naik MM, Pandey A, Dubey SK (2013) Isolation and identification of Aeromonas caviae strain KS-1 as TBTC- and lead-resistant estuarine bacteria. Environ Monit Assess 185:5243–5249

    CAS  PubMed  Google Scholar 

  • Shao W, Li M, Teng Z, Qiu B, Huo Y, Zhang K (2019) Effects of Pb(II) and Cr(VI) stress on phosphate-solubilizing bacteria (Bacillus sp. Strain MRP-3): oxidative stress and bioaccumulation potential. Int J Environ Res Public Health 16:2172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Jasrotia T, Umar A, Sharma M, Sharma S, Kumar R, Alkhanjaf AAM, Vats R, Beniwal V, Kumar R, Singh J (2022) Effective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: an experimental and mechanistic approach. Environ Res 212(Pt B):113337

    CAS  PubMed  Google Scholar 

  • Singh J, Mishra V (2020a) Modeling of adsorption flux in nickel-contaminated synthetic simulated wastewater in the batch reactor. J Environ Sci Health Part A 55:1059–1069

    CAS  Google Scholar 

  • Singh J, Mishra V (2020b) Simultaneous removal of Cu2+, Ni2+ and Zn2+ ions using leftover Azadirachta indica twig ash. Biorem J 25:48–71

    Google Scholar 

  • Singh V, Mishra V (2021a) Microbial removal of Cr (VI) by a new bacterial strain isolated from the site contaminated with coal mine effluents. J Environ Chem Eng 9:106279

    CAS  Google Scholar 

  • Singh J, Mishra V (2021b) Development of sustainable and ecofriendly metal ion scavenger for adsorbing Cu2+, Ni2+ and Zn2+ ions from the aqueous phase. Sep Sci Technol 57:354–371

    Google Scholar 

  • Singh V, Singh MP, Mishra V (2020) Bioremediation of toxic metal ions from coal washery effluent. Desalin Water Treat 197:300–318

    CAS  Google Scholar 

  • Singh V, Singh S, Mishra V (2021a) Sorption kinetics of an eco-friendly and sustainable Cr (VI) ion scavenger in a batch reactor. J Environ Chem Eng 9:105125–105166

    CAS  Google Scholar 

  • Singh V, Singh S, Mishra V (2021b) Development of a cost-effective, recyclable and viable metal ion doped adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions. J Environ Chem Eng 9:105124–105137

    CAS  Google Scholar 

  • Sodhi KK, Kumar M, Singh DK (2020) Multi-metal resistance and potential of Alcaligenes sp. MMA for the removal of heavy metals. SN Appl Sci 2:1885

    CAS  Google Scholar 

  • Steunou AS, Babot M, Bourbon ML, Tambosi R, Durand A, Liotenberg S, Krieger-Liszkay A, Yamaichi Y, Ouchane S (2020) Additive effects of metal excess and superoxide, a highly toxic mixture in bacteria. Microbial Biotechnol 13:1515–1529

    CAS  Google Scholar 

  • Syed S, Chinthala P (2015) Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica (cairo) 2015:1–8

    Google Scholar 

  • Talib NSR, Halmi MIE, Ghani SSA, Zaidan UH, Shukor MYA (2019) Artificial neural networks (ANNs) and response surface methodology (RSM) approach for modelling the optimization of chromium (VI) reduction by newly isolated Acinetobacter radioresistens strain NS-MIE from agricultural soil. Biomed Res Int 2019:5785387

    Google Scholar 

  • Tang X, Huang Y, Li Y, Wang L, Pei X, Zhou D, He P, Hughes SS (2021) Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. Ecotoxicol Environ Saf 208:111699

    CAS  PubMed  Google Scholar 

  • Tekerlekopoulou AG, Tsiflikiotou M, Akritidou L, Viennas A, Tsiamis G, Pavlou S, Bourtzis K, Vayenas DV (2013) Modelling of biological Cr (VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Res 47:623–636

    CAS  PubMed  Google Scholar 

  • Tian Y, Zhang H, Zheng L, Li S, Hao H, Yin M, Cao Y, Huang H (2019) Process analysis of anaerobic fermentation exposure to metal mixtures. Int J Environ Res Public Health 16:2458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voica DM, Bartha L, Banciu HL, Oren A (2016) Heavy metal resistance in halophilic bacteria and archaea. FEMS Microbiol Lett 363:1–9

    Google Scholar 

  • Wang T, Yao J, Yuan Z, Wang F, Chen H (2018) Isolation of lead-resistant Arthrobactor strain GQ-9 and its biosorption mechanism. Environ Sci Pollut Res 25:3527–3538

    CAS  Google Scholar 

  • Yildiz S (2018) Artificial neural network approach for modeling of Ni (II) adsorption from aqueous solution by peanut shell. Ecol Chem Eng S 25:581–604

    CAS  Google Scholar 

  • Yu X, Zhao JT, Liu X, Sun L, Tian J, Wu N (2021) Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria. Front Microbiol 12:2099–2109

    Google Scholar 

  • Zeng W, Li F, Wu C, Yu R, Wu X, Shen L, Liu Y, Qiu G, Li J (2020) Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst Eng 43:153–167

    CAS  PubMed  Google Scholar 

  • Zhang K, Xue Y, Zhang J, Hu X (2020) Removal of lead from acidic wastewater by bio-mineralized bacteria with pH self-regulation. Chemosphere 241:125041

    CAS  PubMed  Google Scholar 

  • Zhao C, Yang Q, Chen W, Teng B (2012) Removal of hexavalent chromium in tannery wastewater by Bacillus cereus. Can J Microbiol 58:23–28

    CAS  PubMed  Google Scholar 

  • Zhao Q, Li X, Xiao S, Peng W, Fan W (2021) Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments. J Hazard Mater 406:124680

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this manuscript are thankful to the IIT (BHU), University of Allahabad and Poznan University of Technology for their necessary support during this study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, experiments, data collection and analysis were performed by VS, JS, NS, MKV, MV, VS, MSC, SNR, MB and VM. The first draft of the manuscript was written by VS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Vishal Mishra.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Singh, J., Singh, N. et al. Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. Biometals 36, 829–845 (2023). https://doi.org/10.1007/s10534-022-00476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-022-00476-4

Keywords

Navigation