Skip to main content

Advertisement

Log in

A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs)

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

To ensure the safe use of nanoparticles (NPs) in modern society, it is necessary and urgent to assess the potential toxicity of NPs. Cardiovascular system is required for the systemic distribution of NPs entering circulation. Therefore, the adverse cardiovascular effects of NPs have gained extensive research interests. Metal based NPs, such as TiO2, ZnO and Ag NPs, are among the most popular NPs found in commercially available products. They may also have potential applications in biomedicine, which could increase their contact with cardiovascular systems. This review aimed at providing an overview about the adverse cardiovascular effects of TiO2, ZnO and Ag NPs. We discussed about the bio-distribution of NPs following different exposure routes. We also discussed about the cardiovascular toxicity of TiO2, ZnO and Ag NPs as assessed by in vivo and in vitro models. The possible mechanisms and contribution of physicochemical properties of metal based NPs were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aijie C, Huimin L, Jia L, Lingling O, Limin W, Junrong W, Xuan L, Xue H, Longquan S (2017) Central neurotoxicity induced by the instillation of ZnO and TiO2 nanoparticles through the taste nerve pathway. Nanomedicine (Lond) 12:2453–2470

    Article  CAS  Google Scholar 

  • Anozie UC, Dalhaimer P (2017) Molecular links among non-biodegradable nanoparticles, reactive oxygen species, and autophagy. Adv Drug Deliv Rev 122:65–73

    Article  PubMed  CAS  Google Scholar 

  • Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43–54

    Article  PubMed  CAS  Google Scholar 

  • Bachler G, van Goetz N, Hungerbuhler K (2013) A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomed 8:3365–3382

    Google Scholar 

  • Bachler G, van Goetz N, Hungerbuhler K (2015) Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 9:373–380

    Article  PubMed  CAS  Google Scholar 

  • Baky NA, Faddah LM, Al-Rasheed NM, Al-Rasheed NM, Fatani AJ (2013) Induction of inflammation, DNA damage and apoptosis in rat heart after oral exposure to zinc oxide nanoparticles and the cardioprotective role of alpha-lipoic acid and vitamin E. Drug Res (Stuttg) 63:228–236

    Article  CAS  Google Scholar 

  • Bayat N, Lopes VR, Scholermann J, Jensen LD, Cristobal S (2015) Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo. Biomaterials 63:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bengalli R, Gualtieri M, Capasso L, Urani C, Camatini M (2017) Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier. Toxicol Lett 279:22–32

    Article  PubMed  CAS  Google Scholar 

  • Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM (2017) Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 34:33–51

    Article  PubMed  CAS  Google Scholar 

  • Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM (2017) A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 47:767–810

    Article  PubMed  Google Scholar 

  • Cao Y (2018) The toxicity of nanoparticles to human endothelial cells. Adv Exp Med Biol 1048:59–69

    Article  PubMed  Google Scholar 

  • Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J (2017a) The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 37:1369

    Article  CAS  Google Scholar 

  • Cao Y, Long J, Liu L, He T, Jiang L, Zhao C, Li Z (2017b) A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci 186:33–42

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Guo Y, Chen S, Ge Z, Yang H, Tang J (2012) Fabrication of Cu/TiO2 nanocomposite: toward an enhanced antibacterial performance in the absence of light. Mater Lett 83:154–157

    Article  CAS  Google Scholar 

  • Chen T, Hu J, Chen C, Pu J, Cui X, Jia G (2013) Cardiovascular effects of pulmonary exposure to titanium dioxide nanoparticles in ApoE knockout mice. J Nanosci Nanotechnol 13:3214–3222

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, Chen C (2014a) Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8:2562–2574

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Guo Y, Zhong H, Chen S, Li J, Ge Z, Tang J (2014b) Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chem Eng J 256:238–246

    Article  CAS  Google Scholar 

  • Chen WY, Cheng YH, Hsieh NH, Wu BC, Chou WC, Ho CC, Chen JK, Liao CM, Lin P (2015a) Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice. Int J Nanomed 10:6277–6292

    CAS  Google Scholar 

  • Chen Z, Wang Y, Zhuo L, Chen S, Zhao L, Luan X, Wang H, Jia G (2015b) Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol Lett 239:123–130

    Article  PubMed  CAS  Google Scholar 

  • Chen IC, Hsiao IL, Lin HC, Wu CH, Chuang CY, Huang YJ (2016) Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environ Toxicol Pharmacol 47:108–118

    Article  PubMed  CAS  Google Scholar 

  • Chuang KJ, Lee KY, Pan CH, Lai CH, Lin LY, Ho SC, Ho KF, Chuang HC (2016) Effects of zinc oxide nanoparticles on human coronary artery endothelial cells. Food Chem Toxicol 93:138–144

    Article  PubMed  CAS  Google Scholar 

  • Danielsen PH, Cao Y, Roursgaard M, Moller P, Loft S (2015) Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology 9:813–824

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Li J, Huang R, Liu Z, Li C, Yao S, Wang J, Qi D, Li N, Pi J (2016) Salvianolic acid B protects against myocardial damage caused by nanocarrier TiO2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO2 nanoparticles. Int J Nanomed 11:5709–5727

    Article  Google Scholar 

  • Disdier C, Devoy J, Cosnefroy A, Chalansonnet M, Herlin-Boime N, Brun E, Lund A, Mabondzo A (2015) Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part Fibre Toxicol 12:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH (2015) The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem Soc Rev 44:6094–6121

    Article  PubMed  CAS  Google Scholar 

  • Elgrabli D, Beaudouin R, Jbilou N, Floriani M, Pery A, Rogerieux F, Lacroix G (2015) Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS ONE 10:e0124490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fennell TR, Mortensen NP, Black SR, Snyder RW, Levine KE, Poitras E, Harrington JM, Wingard CJ, Holland NA, Pathmasiri W, Sumner SC (2017) Disposition of intravenously or orally administered silver nanoparticles in pregnant rats and the effect on the biochemical profile in urine. J Appl Toxicol 37:530–544

    Article  PubMed  CAS  Google Scholar 

  • Frohlich E, Roblegg E (2016) Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Arch Toxicol 90:2297–2314

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Mahapatra CT, Mapes CD, Khlebnikova M, Wei A, Sepulveda MS (2016) Vascular toxicity of silver nanoparticles to developing zebrafish (Danio rerio). Nanotoxicology 10:1363–1372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gate L, Disdier C, Cosnier F, Gagnaire F, Devoy J, Saba W, Brun E, Chalansonnet M, Mabondzo A (2017) Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats. Toxicol Lett 265:61–69

    Article  PubMed  CAS  Google Scholar 

  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409

    Article  PubMed  CAS  Google Scholar 

  • Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MT (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–2198

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Wang Y, Kuang T (2017) ZIF-8-based membranes for carbon dioxide capture and separation. ACS Sustain Chem Eng 5:11204–11214

    Article  CAS  Google Scholar 

  • Gu Y, Cheng S, Chen G, Shen Y, Li X, Jiang Q, Li J, Cao Y (2017) The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells. Toxicol Mech Method 27:191–200

    Article  CAS  Google Scholar 

  • Haberl N, Hirn S, Holzer M, Zuchtriegel G, Rehberg M, Krombach F (2015) Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment. Nanotoxicology 9:963–971

    Article  PubMed  CAS  Google Scholar 

  • Halamoda KB, Chapuis BC, Guney-Ayra S, Juillerat-Jeanneret L (2012) Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J 441:813–821

    Article  CAS  Google Scholar 

  • Hassanein KM, El-Amir YO (2017) Protective effects of thymoquinone and avenanthramides on titanium dioxide nanoparticles induced toxicity in Sprague-Dawley rats. Pathol Res Pract 213:13–22

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson OD, Klochkov SG, Novikova OV, Bravova IM, Shevtsova EF, Safenkova IV, Zherdev AV, Bachurin SO, Dzantiev BB (2016) Toxicity of nanosilver in intragastric studies: biodistribution and metabolic effects. Toxicol Lett 241:184–192

    Article  PubMed  CAS  Google Scholar 

  • Holland NA, Becak DP, Shannahan JH, Brown JM, Carratt SA, Winkle L, Pinkerton KE, Wang CM, Munusamy P, Baer DR, Sumner SJ, Fennell TR, Lust RM, Wingard CJ (2015) Cardiac ischemia reperfusion injury following instillation of 20 nm citrate-capped nanosilver. J Nanomed Nanotechnol 6:10–7439

    Google Scholar 

  • Holland NA, Thompson LC, Vidanapathirana AK, Urankar RN, Lust RM, Fennell TR, Wingard CJ (2016) Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Part Fibre Toxicol 13:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, Chen F, Zhao Y, Chang YZ, Chen C (2015) Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: the role in toxicity evaluation. Biomaterials 61:307–315

    Article  PubMed  CAS  Google Scholar 

  • Husain M, Wu D, Saber AT, Decan N, Jacobsen NR, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S (2015) Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology 9:1013–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jawad H, Boccaccini AR, Ali NN, Harding SE (2011) Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. Nanotoxicology 5:372–380

    Article  PubMed  CAS  Google Scholar 

  • Kielbik P, Kaszewski J, Rosowska J, Wolska E, Witkowski BS, Gralak MA, Gajewski Z, Godlewski M, Godlewski MM (2017) Biodegradation of the ZnO: Eu nanoparticles in the tissues of adult mouse after alimentary application. Nanomedicine 13:843–852

    Article  PubMed  CAS  Google Scholar 

  • Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A (2017) Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev 117:11476–11521

    Article  PubMed  CAS  Google Scholar 

  • Kreyling WG, Holzwarth U, Haberl N, Kozempel J, Wenk A, Hirn S, Schleh C, Schaffler M, Lipka J, Semmler-Behnke M, Gibson N (2017) Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: part 3. Nanotoxicology 11:454–464

    Article  PubMed  CAS  Google Scholar 

  • Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine 9:39–54

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, Jeong HJ, Kim DW, Sohn MH, Lim ST (2012a) The effect of fluorination of zinc oxide nanoparticles on evaluation of their biodistribution after oral administration. Nanotechnology 23:205102

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, Jeong HJ, Yun KN, Kim DW, Sohn MH, Lee JK, Jeong J, Lim ST (2012b) Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. Int J Nanomed 7:3203–3209

    CAS  Google Scholar 

  • Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, Liao JW, Kang JJ (2012) Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–756

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Sun K, Wang Y, Dong S, Wang C, Liu L, Wu Y (2016) Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid. Chem Biol Interact 258:40–51

    Article  PubMed  CAS  Google Scholar 

  • Lin CX, Yang SY, Gu JL, Meng J, Xu HY, Cao JM (2017) The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice. Nanotoxicology 11:827–837

    PubMed  CAS  Google Scholar 

  • Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res 129:170–180

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Miao P, Xu Y, Tian Z, Zou Z, Li G (2010) Study of Pt/TiO2 nanocomposite for cancer-cell treatment. J Photochem Photobiol, B 98:207–210

    Article  CAS  Google Scholar 

  • Luo YH, Chang LW, Lin P (2015) Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. Biomed Res Int 2015:143720

    PubMed  PubMed Central  Google Scholar 

  • Luyts K, Smulders S, Napierska D, Van KS, Poels K, Scheers H, Hemmeryckx B, Nemery B, Hoylaerts MF, Hoet PH (2014) Pulmonary and hemostatic toxicity of multi-walled carbon nanotubes and zinc oxide nanoparticles after pulmonary exposure in Bmal1 knockout mice. Part Fibre Toxicol 11:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manshian BB, Pfeiffer C, Pelaz B, Heimerl T, Gallego M, Moller M, Del Pino P, Himmelreich U, Parak WJ, Soenen SJ (2015) High-content imaging and gene expression approaches to unravel the effect of surface functionality on cellular interactions of silver nanoparticles. ACS Nano 9:10431–10444

    Article  PubMed  CAS  Google Scholar 

  • Martins ADC Jr, Azevedo LF, de Souza Rocha CC, Carneiro MFH, Venancio VP, de Almeida MR, Antunes LMG, de Carvalho HR, Rodrigues JL, Ogunjimi AT, Adeyemi JA, Barbosa F Jr (2017) Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. J Toxicol Environ Health A 80:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen L, Sheykhzade M, Jensen KA, Saber AT, Jacobsen NR, Vogel U, Wallin H, Loft S, Moller P (2011) Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO(2). Part Fibre Toxicol 8:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Monse C, Hagemeyer O, Raulf M, Jettkant B, van Kampen V, Kendzia B, Gering V, Kappert G, Weiss T, Ulrich N, Marek EM, Bunger J, Bruning T, Merget R (2018) Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part Fibre Toxicol 15:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Montiel-Davalos A, Ventura-Gallegos JL, Alfaro-Moreno E, Soria-Castro E, Garcia-Latorre E, Cabanas-Moreno JG, Ramos-Godinez MDP, Lopez-Marure R (2012) TiO(2) nanoparticles induce dysfunction and activation of human endothelial cells. Chem Res Toxicol 25:920–930

    Article  PubMed  CAS  Google Scholar 

  • Munger MA, Radwanski P, Hadlock GC, Stoddard G, Shaaban A, Falconer J, Grainger DW, Deering-Rice CE (2014) In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine 10:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Chen BT, Frazer DG, Boegehold MA, Castranova V (2009) Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 110:191–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194

    Article  PubMed  CAS  Google Scholar 

  • Pang C, Brunelli A, Zhu C, Hristozov D, Liu Y, Semenzin E, Wang W, Tao W, Liang J, Marcomini A, Chen C, Zhao B (2016) Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology 10:129–139

    PubMed  CAS  Google Scholar 

  • Papa AL, Dumont L, Vandroux D, Millot N (2013) Titanate nanotubes: towards a novel and safer nanovector for cardiomyocytes. Nanotoxicology 7:1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeong U, Yoon C, Kim Y (2017) Comparison of distribution and toxicity of different types of zinc-based nanoparticles. Environ Toxicol 32:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Peynshaert K, Manshian BB, Joris F, Braeckmans K, De Smedt SC, Demeester J, Soenen SJ (2014) Exploiting intrinsic nanoparticle toxicity: the pros and cons of nanoparticle-induced autophagy in biomedical research. Chem Rev 114:7581–7609

    Article  PubMed  CAS  Google Scholar 

  • Roberts JR, McKinney W, Kan H, Krajnak K, Frazer DG, Thomas TA, Waugh S, Kenyon A, MacCuspie RI, Hackley VA, Castranova V (2013) Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles. J Toxicol Environ Health A 76:651–668

    Article  PubMed  CAS  Google Scholar 

  • Savi M, Rossi S, Bocchi L, Gennaccaro L, Cacciani F, Perotti A, Amidani D, Alinovi R, Goldoni M, Aliatis I, Lottici PP, Bersani D, Campanini M, Pinelli S, Petyx M, Frati C, Gervasi A, Urbanek K, Quaini F, Buschini A, Stilli D, Rivetti C, Macchi E, Mutti A, Miragoli M, Zaniboni M (2014) Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol 11:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT (2015) Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev 44:8174–8199

    Article  PubMed  CAS  Google Scholar 

  • Sha B, Gao W, Wang S, Li W, Liang X, Xu F, Lu TJ (2013) Nano-titanium dioxide induced cardiac injury in rat under oxidative stress. Food Chem Toxicol 58:280–288

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Muresanu DF, Patnaik R, Sharma HS (2013) Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol 48:386–396

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Muresanu DF, Lafuente JV, Patnaik R, Tian ZR, Buzoianu AD, Sharma HS (2015a) Sleep deprivation-induced blood-brain barrier breakdown and brain dysfunction are exacerbated by size-related exposure to Ag and Cu nanoparticles. Neuroprotective effects of a 5-HT3 receptor antagonist ondansetron. Mol Neurobiol 52:867–881

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Kiyatkin EA, Patnaik R, Lafuente JV, Muresanu DF, Sjoquist PO, Sharma A (2015b) Exacerbation of methamphetamine neurotoxicity in cold and hot environments: neuroprotective effects of an antioxidant compound H-290/51. Mol Neurobiol 52:1023–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Sun X, Lin Y, Zou X, Li Z, Liao Y, Du M, Zhang H (2014) Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-kappaB pathways. Biomaterials 35:6657–6666

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Saez G, Muggiolu G, Lavenas M, Le TQ, Michelet C, Deves G, Barberet P, Chevet E, Dupuy D, Delville MH, Seznec H (2017) In situ quantification of diverse titanium dioxide nanoparticles unveils selective endoplasmic reticulum stress-dependent toxicity. Nanotoxicology 11:134–145

    Article  PubMed  CAS  Google Scholar 

  • Smulders S, Luyts K, Brabants G, Landuyt KV, Kirschhock C, Smolders E, Golanski L, Vanoirbeek J, Hoet PH (2014) Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol Sci 141:132–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song B, Liu J, Feng X, Wei L, Shao L (2015) A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res Lett 10:1042

    PubMed  Google Scholar 

  • Stapleton PA, Nichols CE, Yi J, McBride CR, Minarchick VC, Shepherd DL, Hollander JM, Nurkiewicz TR (2015) Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 9:941–951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su CK, Liu HT, Hsia SC, Sun YC (2014) Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme. Anal Chem 86:8267–8274

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H (2011) Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol Toxicol 27:333–342

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Shi J, Zou X, Wang C, Yang Y, Zhang H (2016) Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J Hazard Mater 317:570–578

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Tada-Oikawa S, Ichihara G, Yabata M, Izuoka K, Suzuki M, Sakai K, Ichihara S (2014) Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicol Appl Pharmacol 278:16–25

    Article  PubMed  CAS  Google Scholar 

  • Tian A, Qin X, Wu A, Zhang H, Xu Q, Xing D, Yang H, Qiu B, Xue X, Zhang D, Dong C (2015) Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells. Int J Nanomed 10:2423–2439

    Article  CAS  Google Scholar 

  • Tomaszewski KA, Radomski MW, Santos-Martinez MJ (2015) Nanodiagnostics, nanopharmacology and nanotoxicology of platelet-vessel wall interactions. Nanomedicine (Lond) 10:1451–1475

    Article  CAS  Google Scholar 

  • Trickler WJ, Lantz-McPeak SM, Robinson BL, Paule MG, Slikker W Jr, Biris AS, Schlager JJ, Hussain SM, Kanungo J, Gonzalez C, Ali SF (2014) Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metab Rev 46:224–231

    Article  PubMed  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Chen Z, Ba T, Pu J, Chen T, Song Y, Gu Y, Qian Q, Xu Y, Xiang K, Wang H, Jia G (2013) Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 9:1742–1752

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T (2016) Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS ONE 11:e0164434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu T, Tang M (2018) Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38:25–40

    Article  PubMed  CAS  Google Scholar 

  • Xiaoli F, Junrong W, Xuan L, Yanli Z, Limin W, Jia L, Longquan S (2017) Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability. Nanomedicine (Lond) 12:777–795

    Article  CAS  Google Scholar 

  • Xu L, Dan M, Shao A, Cheng X, Zhang C, Yokel RA, Takemura T, Hanagata N, Niwa M, Watanabe D (2015a) Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int J Nanomed 10:6105–6118

    CAS  Google Scholar 

  • Xu Y, Wang L, Bai R, Zhang T, Chen C (2015b) Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 7:16100–16109

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, Gong X, Gu Z, Chen Y, Tan Y, Dong C, Sreeprasad TS (2016) Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental-theoretical consideration. Nanoscale 8:17919–17927

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Wang W, Wu Y, Wang W, Li B, Liang N, Wu W (2017) Zinc oxide nanoparticle-induced atherosclerotic alterations in vitro and in vivo. Int J Nanomed 12:4433–4442

    Article  Google Scholar 

  • Yang Y, Lan J, Xu Z, Chen T, Zhao T, Cheng T, Shen J, Lv S, Zhang H (2014) Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice. Nanotoxicology 8:107–116

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Yang Y, Ma Y, Li S, Wei Y, Huang Z, Long NV (2017) Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials (Basel) 7:E398

    Article  CAS  Google Scholar 

  • Yun JW, Kim SH, You JR, Kim WH, Jang JJ, Min SK, Kim HC, Chung DH, Jeong J, Kang BC, Che JH (2015) Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats. J Appl Toxicol 35:681–693

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Tang H, Liu Z, Chen B (2017a) Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomed 12:8483–8493

    Article  Google Scholar 

  • Zhang L, Zheng S, Wang L, Tang H, Xue H, Wang G, Pang H (2017b) Fabrication of metal molybdate micro/nanomaterials for electrochemical energy storage. Small 13:10

    PubMed Central  Google Scholar 

  • Zhang J, Zou Z, Wang B, Xu G, Wu Q, Zhang Y, Yuan Z, Yang X, Yu C (2018) Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials 161:228–239

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Qi N, Zhang KQ, Gong X (2016) Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb, Er nanocomposites with metal-enhanced fluorescence behavior. Phys Chem Chem Phys 18:15289–15294

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21707114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Cao or Wenzhen Liao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Gong, Y., Liao, W. et al. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals 31, 457–476 (2018). https://doi.org/10.1007/s10534-018-0113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-018-0113-7

Keywords

Navigation