, Volume 31, Issue 3, pp 381–398 | Cite as

Are lactoferrin receptors in Gram-negative bacteria viable vaccine targets?

  • Clement Chan
  • Vahid F. Andisi
  • Dixon Ng
  • Nick Ostan
  • Warren K. Yunker
  • Anthony B. Schryvers


A number of important Gram-negative pathogens that reside exclusively in the upper respiratory or genitourinary tract of their mammalian host rely on surface receptors that specifically bind host transferrin and lactoferrin as a source of iron for growth. The transferrin receptors have been targeted for vaccine development due to their critical role in acquiring iron during invasive infection and for survival on the mucosal surface. In this study, we focus on the lactoferrin receptors, determining their prevalence in pathogenic bacteria and comparing their prevalence in commensal Neisseria to other surface antigens targeted for vaccines; addressing the issue of a reservoir for vaccine escape and impact of vaccination on the microbiome. Since the selective release of the surface lipoprotein lactoferrin binding protein B by the NalP protease in Neisseria meningitidis argues against its utility as a vaccine target, we evaluated the release of outer membrane vesicles, and transferrin and lactoferrin binding in N. meningitidis and Moraxella catarrhalis. The results indicate that the presence of NalP reduces the binding of transferrin and lactoferrin by cells and native outer membrane vesicles, suggesting that NalP may impact all lipoprotein targets, thus this should not exclude lactoferrin binding protein B as a target.


Lactoferrin-binding protein Transferrin binding protein Vaccine Antimicrobial peptides 



This work was supported by funding from the Canadian Institutes of Health Research (Grant MOP138273), and the National Sciences and Engineering Council (RGPIN-2016-04555) for ABS.


This study was supported by the Canadian Institutes of Health Research (Grant Number MOP138273) and the National Sciences and Engineering Council of Canada (Discovery Grant 298351-2010).

Compliance with ethical standards

Conflict of interest

ABS is a stakeholder in Engineered Antigens Inc.


  1. Adhikari P, Kirby SD, Nowalk AJ, Veraldi KL, Schryvers AB, Mietzner TA (1995) Biochemical characterization of a Haemophilus influenzae periplasmic iron transport operon. J Biol Chem 42:25142–25149CrossRefGoogle Scholar
  2. Anderson JE, Hobbs MM, Biswas GD, Sparling PF (2003) Opposing selective forces for expression of the gonococcal lactoferrin receptor. Mol Microbiol 48(5):1325–1337CrossRefPubMedGoogle Scholar
  3. Arutyunova E, Brooks CL, Beddek A, Mak MW, Schryvers AB, Lemieux MJ (2012) Crystal structure of the N-lobe of lactoferrin binding protein B from Moraxella bovis. Biochem Cell Biol 90(3):351–361. CrossRefPubMedGoogle Scholar
  4. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. CrossRefGoogle Scholar
  5. Baltes N, Hennig-Pauka I, Gerlach GF (2002) Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection. FEMS Microbiol Lett 209(2):283–287CrossRefPubMedGoogle Scholar
  6. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barber MF, Elde NC (2014) Nutritional immunity. Escape from bacterial iron piracy through rapid evolution of transferrin. Science 346(6215):1362–1366. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barber MF, Kronenberg Z, Yandell M, Elde NC (2016) Antimicrobial functions of lactoferrin promote genetic conflicts in ancient primates and modern humans. PLoS Genet 12(5):e1006063. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Biswas GD, Sparling PF (1995) Characterization of lbpA, the structural gene for a lactoferrin receptor in Neisseria gonorrhoeae. Infect Immun 63(8):2958–2967PubMedPubMedCentralGoogle Scholar
  10. Bonnah RA, Schryvers AB (1998) Preparation and characterization of Neisseria meningitidis mutants deficient in the production of the human lactoferrin binding proteins LbpA and LbpB. J Bacteriol 180(12):3080–3090PubMedPubMedCentralGoogle Scholar
  11. Bonnah RA, Yu R-H, Schryvers AB (1995) Biochemical analysis of lactoferrin receptors in the Neisseriaceae: identification of a second bacterial lactoferrin receptor protein. Microb Pathog 19(5):285–297CrossRefPubMedGoogle Scholar
  12. Bonnah RA, Wong H, Loosmore SM, Schryvers AB (1999) Characterization of Moraxella (Branhamella) catarrhalis lbpB, lbpA and lactoferrin receptor orf3 isogenic mutants. Infect Immun 67(3):1517–1520PubMedPubMedCentralGoogle Scholar
  13. Brooks CL, Arutyunova E, Lemieux MJ (2014) The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Acta Crystallograph Sect F 70(Pt 10):1312–1317. CrossRefGoogle Scholar
  14. Calmettes C, Yu R-H, Silva LP, Curran D, Schriemer DC, Schryvers AB, Moraes TF (2011) Structural variations within the transferrin binding site on transferrin binding protein, TbpB. J Biol Chem 286:12683–12692CrossRefPubMedPubMedCentralGoogle Scholar
  15. Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, Gray-Owen SD, Pomes R, Moraes TF (2015) The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun 6:7996. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Carson SD, Stone B, Beucher M, Fu J, Sparling PF (2000) Phase variation of the gonococcal siderophore receptor FetA. Mol Microbiol 36(3):585–593CrossRefPubMedGoogle Scholar
  17. Cornelissen CN, Hollander A (2011) TonB-dependent transporters expressed by Neisseria gonorrhoeae. Front Microbiol 2:117. PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cornelissen CN, Kelley M, Hobbs MM, Anderson JE, Cannon JG, Cohen MS, Sparling PF (1998) The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol Microbiol 27(3):611–616CrossRefPubMedGoogle Scholar
  19. Curran D, Adamiak P, Fegan J, Qian C, Yu R, Schryvers AB (2015) Sequence and structural diversity of transferrin receptors in Gram-negative porcine pathogens. Vaccine 33(42):5700–5707CrossRefPubMedGoogle Scholar
  20. Danve B, Lissolo L, Mignon M, Dumas P, Colombani S, Schryvers AB, Quentin-Millet MJ (1993) Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 11:1214–1220CrossRefPubMedGoogle Scholar
  21. Danve B, Lissolo L, Guinet F, Boutry E, Speck D, Cadoz M, Nassif X, Quentin-Millet MJ (1998) Safety and immunogenicity of a Neisseria meningitidis group B transferrin binding protein vaccine in adults. In: Nassif X, Quentin-Millet M-J, Taha M-K (eds) 11th International Pathogenic Neisseria Conference, Nice, 1998. Eleventh International Pathogenic Neisseria ConferenceGoogle Scholar
  22. D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17(3):254–264. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Du R, Wang Q, Yang Y-P, Schryvers AB, Chong P, England D, Klein MH, Loosmore SM (1998) Cloning and expression of the Moraxella catarrhalis lactoferrin receptor genes. Infect Immun 66(8):3656–3664PubMedPubMedCentralGoogle Scholar
  24. Ekins A, Bahrami F, Sijercic A, Maret D, Niven DF (2004) Haemophilus somnus possesses two systems for acquisition of transferrin-bound iron. J Bacteriol 186(13):4407–4411CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frandoloso R, Martinez-Martinez S, Calmettes C, Fegan J, Costa E, Curran D, Yu R, Gutierrez-Martin CB, Rodriguez-Ferri EF, Moraes TF, Schryvers AB (2015) Nonbinding site-directed mutants of transferrin binding protein B enhances their immunogenicity and protective capabilities. Infect Immun 83(3):1030–1038CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gonzalez GC, Caamano DL, Schryvers AB (1990) Identification and characterization of a porcine-specific transferrin receptor in Actinobacillus pleuropneumoniae. Mol Microbiol 4:1173–1179CrossRefPubMedGoogle Scholar
  27. Gray-Owen SD, Schryvers AB (1993) The interaction of primate transferrins with receptors on bacteria pathogenic to humans. Microb Pathog 14:389–398CrossRefPubMedGoogle Scholar
  28. Gray-Owen SD, Schryvers AB (1995) Characterization of transferrin binding proteins 1 and 2 in invasive type b and nontypable strains of Haemophilus influenzae. Infect Immun 63(10):3809–3815PubMedPubMedCentralGoogle Scholar
  29. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5):680–682. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jean S, Juneau RA, Criss AK, Cornelissen CN (2016) Neisseria gonorrhoeae evades calprotectin-mediated nutritional immunity and survives neutrophil extracellular traps by production of TdfH. Infect Immun 84(10):2982–2994. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kellner J, Scheifele D, Vanderkooi O, MacDonald J, Church D (2008) Effects of routine infant vaccination with the 7-valent pneumococcal conjugate vaccine on nasopharyngeal colonization with streptococcus pneumoniae in children in Calgary, Canada. Pediatr Infect Dis J 27:526–532CrossRefPubMedGoogle Scholar
  32. Lee HS, Boulton IC, Reddin K, Wong H, Halliwell D, Mandelboim O, Gorringe AR, Gray-Owen SD (2007) Neisserial outer membrane vesicles bind the co-inhibitory receptor CEACAM1 and suppress CD4+T lymphocyte function. Infect Immun 75:4449–4455CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lewis LA, Sung MH, Gipson M, Hartman K, Dyer DW (1998) Transport of intact porphyrin by HpuAB, the hemoglobin- haptoglobin utilization system of Neisseria meningitidis. J Bacteriol 180(22):6043–6047PubMedPubMedCentralGoogle Scholar
  34. Liang GM, Jiang XP (2010) Positive selection drives lactoferrin evolution in mammals. Genetica 138(7):757–762. CrossRefPubMedGoogle Scholar
  35. Lissolo L, Maitre-Wilmotte G, Dumas P, Mignon M, Danve B, Quentin-Millet M-J (1995) Evaluation of transferrin-binding protein 2 within the transferrin- binding protein complex as a potential antigen for future meningococcal vaccines. Infect Immun 63(3):884–890PubMedPubMedCentralGoogle Scholar
  36. Maiden MC, Ibarz-Pavon AB, Urwin R, Gray SJ, Andrews NJ, Clarke SC, Walker AM, Evans MR, Kroll JS, Neal KR, Ala’aldeen DA, Crook DW, Cann K, Harrison S, Cunningham R, Baxter D, Kaczmarski E, Maclennan J, Cameron JC, Stuart JM (2008) Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J Infect Dis 197(5):737–743. CrossRefPubMedGoogle Scholar
  37. Morgenthau A, Livingstone M, Adamiak P, Schryvers AB (2012) The role of lactoferrin binding protein B in mediating protection against human lactoferricin. Biochem Cell Biol 90(3):417–423. PMID:22332888 CrossRefPubMedGoogle Scholar
  38. Morgenthau A, Pogoutse A, Adamiak P, Moraes TF, Schryvers AB (2013) Bacterial receptors for host transferrin and lactoferrin: molecular mechanisms and role in host-microbe interactions. Future Microbiol 8(12):1575–1585CrossRefPubMedGoogle Scholar
  39. Morgenthau A, Beddek A, Schryvers AB (2014) The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides. PLoS ONE 9(1):e86243. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK (2012) Structural basis for iron piracy by pathogenic Neisseria. Nature 483:53–58. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ogunnariwo JA, Schryvers AB (1990) Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor. Infect Immun 58:2091–2097PubMedPubMedCentralGoogle Scholar
  42. Ogunnariwo JA, Schryvers AB (1992) Correlation between the ability of Haemophilus paragallinarum to acquire ovotransferrin-bound iron and the expression of ovotransferrin- specific receptors. Avian Dis 36:655–663CrossRefPubMedGoogle Scholar
  43. Ogunnariwo JA, Cheng CY, Ford JA, Schryvers AB (1990) Response of Haemophilus somnus to iron limitation: expression and identification of a bovine-specific transferrin receptor. Microb Pathog 9:397–406CrossRefPubMedGoogle Scholar
  44. Ogunnariwo JA, Alcantara J, Schryvers AB (1991) Evidence for non-siderophore-mediated acquisition of transferrin-bound iron by Pasteurella multocida. Microb Pathog 11:47–56CrossRefPubMedGoogle Scholar
  45. Ostan N, Yu R, Ng D, Chieh-Lin Lai C, Pogoutse A, Sarpe V, Hepburn M, Sheff J, Raval S, Schriemer DC, Moraes TF, Schryvers AB (2017) Lactoferrin binding protein B-A bi-functional bacterial receptor protein. PLoS Pathog 13(3):e1006244CrossRefPubMedPubMedCentralGoogle Scholar
  46. Redfield RJ, Findlay WA, Bosse J, Kroll JS, Cameron AD, Nash JH (2006) Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol 6:82. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277CrossRefPubMedGoogle Scholar
  48. Rokbi B, Mignon M, Maitre-Wilmotte G, Lissolo L, Danve B, Caugant DA, Quentin-Millet M-J (1997) Evaluation of recombinant transferrin binding protein B variants from Neisseria meningitidis for their ability of induce cross reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect Immun 65(1):55–63PubMedPubMedCentralGoogle Scholar
  49. Roussel-Jazede V, Jongerius I, Bos MP, Tommassen J, van Ulsen P (2010) NalP-mediated proteolytic release of lactoferrin-binding protein B from the meningococcal cell surface. Infect Immun 78(7):3083–3089. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schaar V, Nordstrom T, Morgelin M, Riesbeck K (2011) Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 55(8):3845–3853. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schryvers AB (1988) Characterization of the human transferrin and lactoferrin receptors in Haemophilus influenzae. Mol Microbiol 2:467–472CrossRefPubMedGoogle Scholar
  52. Schryvers AB (1990) A method for isolating and purifying transferrin and lactoferrin receptor proteins from bacteria and the preparation of vaccines containing the same. France Patent 052878700528787/EP B1Google Scholar
  53. Schryvers AB, Gonzalez GC (1989) Comparison of the abilities of different protein sources of iron to enhance Neisseria meningitidis infection in mice. Infect Immun 57:2425–2429PubMedPubMedCentralGoogle Scholar
  54. Schryvers AB, Gonzalez GC (1990) Receptors for transferrin in pathogenic bacteria are specific for the host’s protein. Can J Microbiol 36:145–147CrossRefPubMedGoogle Scholar
  55. Schryvers AB, Gray-Owen SD (1992) Iron acquisition in Haemophilus influenzae: receptors for human transferrin. J Infect Dis 165(1):S103–S104CrossRefPubMedGoogle Scholar
  56. Schryvers AB, Lee BC (1989) Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriaceae. Can J Microbiol 35(3):409–415CrossRefPubMedGoogle Scholar
  57. Schryvers AB, Morris LJ (1988a) Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 56:1144–1149PubMedPubMedCentralGoogle Scholar
  58. Schryvers AB, Morris LJ (1988b) Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol 2:281–288CrossRefPubMedGoogle Scholar
  59. Schryvers AB, Moraes TF, Gray-Owen SD (2014) Immunogenic compositions and vaccines derived from bacterial surface receptor proteins. PCT/CA2014/051146Google Scholar
  60. Stearns JC, Davidson CJ, McKeon S, Whelan FJ, Fontes ME, Schryvers AB, Bowdish DM, Kellner JD, Surette MG (2015) Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J 9(5):1246–1259. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Stojiljkovic I, Larson J, Hwa V, Anic S, So M (1996) HmbR outer membrane proteins of pathogenic Neisseriae: iron-regulated, hemoglobin binding proteins with high degree of primary structure conservation. J Bacteriol 178:3341–3352CrossRefGoogle Scholar
  62. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287(5459):1809–1815CrossRefPubMedGoogle Scholar
  63. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46(4):327–338CrossRefPubMedGoogle Scholar
  64. West D, Reddin K, Matheson M, Heath R, Funnell S, Hudson M, Robinson A, Gorringe A (2001) Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infect Immun 69(3):1561–1567CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF) strain PCC7518, and phylogenetic analysis. FEBS Lett 317(1–2):96–100CrossRefPubMedGoogle Scholar
  66. Yu R-H, Schryvers AB (2002) Bacterial lactoferrin receptors: insights from characterizing the Moraxella bovis receptors. Biochem Cell Biol 80:81–90CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Clement Chan
    • 1
  • Vahid F. Andisi
    • 1
  • Dixon Ng
    • 1
  • Nick Ostan
    • 2
  • Warren K. Yunker
    • 3
  • Anthony B. Schryvers
    • 1
  1. 1.Department of Microbiology, Immunology & Infectious DiseasesUniversity of CalgaryCalgaryCanada
  2. 2.Department of BiochemistryUniversity of TorontoTorontoCanada
  3. 3.Department of SurgeryUniversity of CalgaryCalgaryCanada

Personalised recommendations