Skip to main content

Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: insights into iron (Fe) homeostasis

Abstract

Iron (Fe) is an essential element for plant life. Its deficiency impedes growth and development and excessive iron can cause the toxic effect via the Fenton reaction. Thus, plants have developed various mechanisms to acquire, distribute and utilize Fe for the maintenance of their iron homeostasis at cellular and systemic levels. A basic helix-loop-helix (bHLH) transcription factor family plays essential roles in many regulatory and development processes in plants. In this study, we aimed to understand the roles of bHLH38, bHLH39, bHLH100 and bHLH101 genes for Fe homeostasis in Arabidopsis, tomato, rice, soybean and maize species by using bioinformatics approaches. The gene/protein sequence analyses of these genes demonstrated that all bHLH proteins comprised helix-loop-helix DNA binding domain (PF00010) with varied exon numbers between 2 and 13. The phylogenetic analysis did not reveal a clear distinction between monocot and dicot plants. A total of 61 cis-elements were found in promotor sequences, including biotic and abiotic stress responsiveness, hormone responsiveness, and tissue specific expressions. The some structural divergences were identified in predicted 3D structures of bHLH proteins with different channels numbers. The co-expression network analysis demonstrated that bHLH39 and bHLH101 played more important roles in Fe regulation in Arabidopsis. The digital expression analysis showed various expression profiles of bHLH genes which were identified in developmental stages, anatomical parts, and perturbations. Particularly, bHLH39 and bHLH101 genes were found to be more active genes in Fe homeostasis. As a result, our findings can contribute to understanding of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Fe homeostasis in plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaquchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Aoki Y, Okamura Y, Tadaka S, Kinoshita K, Obayashi T (2016) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57:e5

    Article  PubMed  CAS  Google Scholar 

  3. Brumbarova T, Bauer P, Ivanov R (2014) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2014.11.004

    PubMed  Article  Google Scholar 

  4. Buckhout TJ, Yang TJ, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genom 10:147

    Article  CAS  Google Scholar 

  5. Celma JR, Pan C, Li W, Lan P, Buckhout TJ, Schmidt W. (2012) The transcriptional response of Arabidopsis leaves to Fe deficiency. Front Plant Sci 4:1–10. Article 276

  6. Colangelo EP, Guennoti ML (2004) The essential basic helix-loop-helix protein fit1 is required for the iron deficiency response. Plant Cell 16:3400–34121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Conorton JM, Balk J, Celma JR (2017) Iron homeostasis in plants—a brief overview. Metallomics 9:813

    Article  Google Scholar 

  8. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945

    Article  PubMed  CAS  Google Scholar 

  9. Eisenhaber F. (2006) Prediction of protein function. In: Discovering biomolecular mechanisms with computational biology. Molecular Biology Intelligence Unit. Springer, Boston

  10. Filiz E, Vatansever R, Ozyigit II (2017) Dissecting a co-expression network of basic helix-loop-helix (bHLH) genes from phosphate (Pi)-starved soybean (Glycine max). Plant Gene 9:19–25

    Article  CAS  Google Scholar 

  11. Garcia CMH, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  CAS  Google Scholar 

  12. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607

    Chapter  Google Scholar 

  13. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  CAS  Google Scholar 

  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  15. He H, Yan J, Yu X, Liang Y, Fang L, Scheller HV, Zhang A (2017) The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana. Biochem Biophys Res Commun 491(3):834–839. https://doi.org/10.1016/j.bbrc.2017.05.131

    Article  PubMed  CAS  Google Scholar 

  16. Heim MA, Jacoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  17. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform. https://doi.org/10.1155/2008/420747

    Article  Google Scholar 

  18. Hudson KA, Hudson ME (2015) A classification of basic helix-loop-helix transcription factors of soybean. Int J Genom. https://doi.org/10.1155/2015/603182

    Article  Google Scholar 

  19. Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21(4):770–782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5:226

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  PubMed  CAS  Google Scholar 

  23. Kim JK, Cho Y, Lee M, Laskowski RA, Ryu SE, Sugihara K, Kim DS (2015) BetaCavityWeb: a webserver for molecular voids and channels. Nucleic Acids Res 43(W1):W413–W418. https://doi.org/10.1093/nar/gkv360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Laloum T, De Mita S, Gamas P, Baudin M, Niebel A (2013) CCAAT-box binding transcription factors in plants: y so many? Trends Plant Sci 18(3):157–166

    Article  PubMed  CAS  Google Scholar 

  26. Lescot M, De´hais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li J, Liu B, Cheng F, Wang X, Aarts MGM, Wu J (2014) Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica Rapa. New Phytol 203:182–194

    Article  PubMed  CAS  Google Scholar 

  28. Liang G, Zhang H, Li X, Ai Q, Yu D (2017) bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J Exp Bot 68(7):1743–1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  31. Murre C, Bain G, Vandijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218:129–135

    Article  PubMed  CAS  Google Scholar 

  32. Nguyen MN, Tan KP, Madhusudhan MS (2011) CLICK -topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res 39:W24–W28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Niu X, Guan Y, Chen S, Li H (2017) Genome-wide analysis of basic helix-loophelix (bHLH) transcription factors in Brachypodium distachyon. BMC Genom 18:619

    Article  Google Scholar 

  34. Pires N, Dolan L (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol 27(4):862–874

    Article  Google Scholar 

  35. Ramamurthy RK, Waters BM (2017) Mapping and characterization of the fefe gene that controls iron uptake in melon (Cucumis melo L.). Front Plant Sci 8:1003

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rasheed S, Bashir K, Matsui A, Tanaka M, Seki M (2016) Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Front. Plant Sci. 7:180. https://doi.org/10.3389/fpls.2016.00180

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rizhsky L, Liang H, Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278(40):38921–38925

    Article  PubMed  CAS  Google Scholar 

  38. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3(1–24):2015

    Google Scholar 

  39. Sivitz AB, Hermand V, Curie C, Vert G (2012) Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-Independent Pathway. PLoS ONE 7(9):e44843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28:405–420

    Article  PubMed  CAS  Google Scholar 

  41. Stein RJ, Waters BM (2012) Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. J Exp Bot 63(2):1039–1055

    Article  PubMed  CAS  Google Scholar 

  42. Sun H, Fan HJ, Ling HQ (2015) Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genom 16:9

    Article  CAS  Google Scholar 

  43. Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16:322–327

    Article  PubMed  CAS  Google Scholar 

  44. Timothy L, Mikael Bode´n B, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  CAS  Google Scholar 

  45. Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Vatansever R, Filiz E, Ozyigit II (2015) Genome-wide analysis of iron-regulated transporter 1 (irt1) genes in plants. hortic. Environ Biotechnol 56:516–523

    CAS  Google Scholar 

  47. Wang H, Klatte M, Jakoby M, Bäumlein H, Weisshaar B, Bauer P (2007) Iron defciency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226:897–908

    Article  PubMed  CAS  Google Scholar 

  48. Wang N, Cui Y, Liu Y, Fan H, Du J, Huang Z, Yuan Y, Wu H, Ling HQ (2013) Requirement and functional redundancy of Ib Subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant 6(2):503–513

    Article  PubMed  CAS  Google Scholar 

  49. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316–3319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wong DCJ, Gutierrez RL, Gambetta GA, Castellarin SD (2017) Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine. DNA Res 24(3):311–326

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Xiang Q (2015) Molecular genetic aspects of iron and copper cross-talk in Arabidopsis thaliana. Dissertation, University of Nebraska-Lincoln

  52. Xing J, Wang T, Ni Z (2015) Epigenetic regulation of iron homeostasis in Arabidopsis. Plant Signal Behav 10:12

    Google Scholar 

  53. Yousefi M, Nematzadeh GA, Askari H, Nasiri N (2012) Bioinformatics analysis of promoters cis elements and study on genes co-expression of oxidative defense pathway in Oryza sativa L. Plant. Int J Agric Crop Sci 4(17):1240–1245

    Google Scholar 

  54. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  PubMed  CAS  Google Scholar 

  55. Zhang J, Liu B, Mengshu L, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015a) The bHLH transcription factor bHLH104 interacts with IAA-leucine resistant3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S (2015b) Genome-wide characterization and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 5:1124

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 728 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurt, F., Filiz, E. Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: insights into iron (Fe) homeostasis. Biometals 31, 489–504 (2018). https://doi.org/10.1007/s10534-018-0095-5

Download citation

Keywords

  • Iron homeostasis
  • Bioinformatics
  • Co-expression network
  • bHLH