BioMetals

, Volume 31, Issue 2, pp 277–284 | Cite as

X-ray structure of bovine heart cytochrome c at high ionic strength

Article
  • 62 Downloads

Abstract

Bovine heart cytochrome c (bCyt c) is an extensively studied hemoprotein of only 104 residues. Due to the existence of isoforms generated by non-enzymatic deaminidation, crystallization of bCyt c is difficult and involves extensive purification and the use of microseeding or the presence of an electric field. Taking advantage of the capacity of cytochrome c (cyt c) to bind anions on its protein surface, the commercially available bCyt c was crystallized without extra purifications, using ammonium sulfate as precipitant and nitrate ions as additives. The structure of the ferric bCyt c in a new crystal form is described and compared with that previously solved at low ionic strength and with those of human and horse cyt c. The overall structure of bCyt c is conserved, while the side chains of several residues that play a role in the interactions of cyt c with its partners have different rotamers in the two structures. The effect of the presence of nitrate ions on the structure of the protein is then evaluated and compared with that observed in the case of ferrous and ferric horse heart cyt c.

Keywords

Hemoprotein crystallization X-ray structure Cytochrome c Hot spots Protein–protein recognition 

Notes

Acknowledgements

The author acknowledges students for his lab for technical assistance and members of ESRF staff for their help with data collection and processing.

Compliance with ethical standard

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Alvarez-Paggi D, Hannibal L, Castro MA et al (2017) Multifunctional cytochrome c: learning new tricks from an old dog. Chem Rev 117(21):13382–13460CrossRefPubMedGoogle Scholar
  2. Banci L, Bertini I, Gray HB, Luchinat C, Reddig T, Rosato A, Turano P (1997) Solution structure of oxidized horse heart cytochrome c. Biochemistry 36:9867–9877CrossRefPubMedGoogle Scholar
  3. Battistuzzi G, Borsari M, Dallari D, Lancellotti I, Sola M (1996) Anion binding to mitochondrial cytochromes c studied through electrochemistry. Effects of the neutralization of surface charges on the redox potential. Eur J Biochem 241:208–214CrossRefPubMedGoogle Scholar
  4. Bertini I, Chevance S, Del Conte R, Lalli D, Turano P (2011) The anti-apoptotic Bcl-XL protein, a new piece in the puzzle of cytochrome c interactome. PLoS ONE 6(4):e18329CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cheng TC, Hong C, Akey IV, Yuan S, Akey CW (2016) A near atomic structure of human apoptosome. ELife 5:e17755PubMedPubMedCentralGoogle Scholar
  6. Cortese JD, Voglino AL, Hackenbroch CR (1995) Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength. Biochim Biophys Acta Bioenerg 1228:216–228CrossRefGoogle Scholar
  7. De March M, Demitri N, De Zorzi R, Casini A, Gabbiani G, Guerri A, Messori L, Geremia S (2014) Nitrate as a probe of cytochrome c surface: crystallographic identification of crucial “hot spots” for protein–protein recognition. J Inorg Biochem 135:58–67CrossRefPubMedGoogle Scholar
  8. De Rocco D, Cerqua C, Np Goffrini, Russo G, Pastore A, Meloni F, Nicchia E, Moraes CT, Pecci A, Salviati L et al (2014) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect boith apoptosis and cellular bioenergetics. Biochim Biophys Acta Mol Basis Dis 1842:269–274CrossRefGoogle Scholar
  9. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 66:486–501CrossRefGoogle Scholar
  10. Ferraro G, Messori L, Merlino A (2015) The X-ray structure of the primary adducts formed in the reaction between cisplatin and cytochrome c. Chem Commun (Camb) 51(13):2559–2561CrossRefGoogle Scholar
  11. Josephs TM, Liptak MD, Hughes G, Lo A, Smith RM, Wilbanks SM, Bren KL, Ledgerwood EC (2013) Conformational change and human cytochrome c function: mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination. J Biol Inorg Chem 18(3):289–297CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kabsch W (2010) XDS. Acta Crystallogr Sect D Biol Crystallogr 66:125–132CrossRefGoogle Scholar
  13. Kantardjieff KA, Rupp B (2003) Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12:1865–1871CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kawai C, Prado FM, Nunes GLC, Di Mascio P, Carmona-Ribeiro AM, Nantes IL (2005) pH-dependent interaction of cytochrome c with mitochondrial mimetic membrane: the role of an array of positively charged amino acids. J Biol Chem 280:34709–34717CrossRefPubMedGoogle Scholar
  15. Kubota T, Homma K, Noda J, Yamane T, Ataka M (2001) Importance of nitrate in the crystal growth of cytochrome c from four biological species judged by morphodrom analysis. J Cryst Growth 233:813–822CrossRefGoogle Scholar
  16. Lange C, Hunte C (2002) Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99:2800–2805CrossRefPubMedPubMedCentralGoogle Scholar
  17. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  18. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell (Camb, Mass) 91:479–489CrossRefGoogle Scholar
  19. Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang CM, Xia Y, Margoliash E, Rao Z, Liu XJ (2006) Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Proc Natl Acad Sci USA 103:8965–8970CrossRefPubMedPubMedCentralGoogle Scholar
  20. Margoliash E (1963) Primary structure and evolution of cytochrome c. Proc Natl Acad Sci USA 50:672–679CrossRefPubMedPubMedCentralGoogle Scholar
  21. Massa EM, Giulivi C (1993) Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: an EPR study. Free Radic Biol Med 14:559–565CrossRefPubMedGoogle Scholar
  22. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674CrossRefPubMedPubMedCentralGoogle Scholar
  23. McLendon G, Smith M (1978) Equilibrium and kinetic studies of unfolding of homologous cytochromes c. J Biol Chem 253:4004–4008PubMedGoogle Scholar
  24. McPherson A, Nguyen C, Cudney R, Larson SB (2011) The role of small molecule additives and chemical modification in protein crystallization. Cryst Growth Des 11:1469–1474CrossRefGoogle Scholar
  25. Mirkin N, Jaconcic J, Sotjanoff V, Moreno A (2008) High resolution X-ray crystallographic structure of bovine heart cytochrome c and its application to the design of an electron transfer biosensor. Proteins 70:83–92CrossRefPubMedGoogle Scholar
  26. Monari S, Battistuzzi G, Borsari M, Millo D, Gooijer C, van der Zwan G, Ranieri A (2008) Sola M (2008) Thermodynamic and kinetic aspects of the electron transfer reaction of bovine cytochrome c immobilized on 4-mercaptopyridine and 11-mercapto-1-undecanoic acid films. J Appl Electrochem 38:885–891CrossRefGoogle Scholar
  27. Moore GR, Pettigrew GW (1990) Cytochromes c: evolutionary, structural, and physicochemical aspects. Springer, BerlinCrossRefGoogle Scholar
  28. Moreno-Beltrán B, Guerra-Castellano A, Díaz-Quintana A, Del Conte R, García-Mauriño SM, Díaz-Moreno S, González-Arzola K, Santos-Ocaña C, Velázquez-Campoy A, De la Rosa MA, Turano P, Díaz-Moreno I (2017) Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48. Proc Natl Acad Sci USA 114(15):E3041–E3050CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morison IM, Cramer Borse EM, Cheesman EJ, Cheong PL, Holoyoaske AJ, Fichelson S, Weeks RJ, Lo A, Davies SM, Wilbanks S et al (2008) A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet 40:387–389CrossRefPubMedGoogle Scholar
  30. Moza B, Qureshi SH, Ahmad F (2003) Equilibrium studies of the effect of difference in sequence homology on the mechanism of denaturation of bovine and horse cytochromes-c. Biochim Biophys Acta 1646(1–2):49–56CrossRefPubMedGoogle Scholar
  31. Muneeswaran G, Kartheeswaran S, Muthukumar K, Karunakaran C (2018) Temperature-dependent conformational dynamics of cytochrome c: implications in apoptosis. J Mol Graph Model 79:140–148CrossRefPubMedGoogle Scholar
  32. Muneeswaran G, Kartheeswaran S, Muthukumar K, Dharmaraj CD, Karunakaran C (2017) Effects of different solvents on the conformations of apoptotic cytochrome c: structural insights from molecular dynamics simulation. J Mol Graph Model 76:234–241CrossRefPubMedGoogle Scholar
  33. Murshudov GN, Vagin AA, Dodson E (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr 53:240–255CrossRefGoogle Scholar
  34. Pan P, McLuckey SA (2003) The effect of small cations on the positive electrospray responses of proteins at low pH. Anal Chem 75(20):5468–5474CrossRefPubMedGoogle Scholar
  35. Pelletier H, Kraut J (1992) Crystal structure of a complex between electron transfer partners cytochrome c peroxidase and cytochrome c. Science 258:1748–1755CrossRefPubMedGoogle Scholar
  36. Rajagopal BS, Edzuma AN, Hough MA, Blundell KLIM, Kagan VE, Kapralov AA, Fraser LA, Butt JN, Silkstone GG, Wilson MT, Svistunenko DA, Worrall JAR (2013) The hydrogen peroxide induced radical behaviour in human cytochrome c phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem J 456:441–452CrossRefPubMedGoogle Scholar
  37. Rytömaa M, Kinnunen PK (1995) Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions. J Biol Chem 270(7):3197–3202CrossRefPubMedGoogle Scholar
  38. Russo Krauss I, Merlino A, Vergara A, Sica F (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14:11643–11691CrossRefPubMedGoogle Scholar
  39. Russo Krauss I, Ferraro G, Pica A, Márquez J, Helliwell JR, Merlino A (2017) Principles and methods used to grow and optimize crystals of protein-metallodrug adducts, to determine metal binding sites and to assign metal ligands. Metallomics 9:1534–1547CrossRefPubMedGoogle Scholar
  40. Sanishvili R, Voltz KW, Westbrook EM, Margoliash E (1995) The low ionic strength crystal structure of horse cytochrome c at 2.1 Å resolution and comparison with its high ionic strength counterpart. Structure 3(7):707–716CrossRefPubMedGoogle Scholar
  41. Schrodinger LLC (2015) The PyMOL molecular graphics system. Version, 1 (8). www.pymol.org
  42. Scott RA, Mauk GA (eds) (1996) Cytochrome c: a multidisciplinary approach. University Science Books, SausalitoGoogle Scholar
  43. Sinibaldi F, Fiorucci L, Patriarca A, Lauceri R, Ferri T, Coletta M, Santucci R (2008) Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength. Biochemistry. 47(26):6928–6935CrossRefPubMedGoogle Scholar
  44. Sinibaldi F, Milazzo L, Howes BD, Piro MC, Fiorucci L, Polticelli F, Ascenzi P, Coletta M, Smulevich G, Santucci R (2017) The key role played by charge in the interaction of cytochrome c with cardiolipin. J Biol Inorg Chem 22(1):19–29CrossRefPubMedGoogle Scholar
  45. Takekiyo T, Ishikawa Y, Yoshimura Y (2017) Cryopreservation of proteins using ionic liquids: a case study of cytochrome c. J Phys Chem B 121(32):7614–7620CrossRefPubMedGoogle Scholar
  46. Trewhella J, Carlson VAP, Curtis EH, Heidorn D (1988) Differences in the solution structures of oxidized and reduced cytochrome c measured by small-angle X-ray scattering. Biochemistry 27:1121–1125CrossRefPubMedGoogle Scholar
  47. Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, Womack T, Bricogne G (2011) Data processing and analysis with the autoPROC toolbox. Acta Crystallogr Sect D Biol Crystallogr 67:293–302CrossRefGoogle Scholar
  48. Wegerich F, Turano P, Allegrozzi M, Möhwald H, Lisdat F (2011) Electroactive multilayer assemblies of bilirubin oxidase and human cytochrome C mutants: insight in formation and kinetic behavior. Langmuir 27(7):4202–4211CrossRefPubMedGoogle Scholar
  49. Wegerich F, Giachetti A, Allegrozzi M, Lisdat F, Turano P (2013) Mechanistic insights into the superoxide-cytochrome c reaction by lysine surface scanning. J Biol Inorg Chem 18(4):429–440CrossRefPubMedGoogle Scholar
  50. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D Biol Crystallogr 67:235–242CrossRefGoogle Scholar
  51. Yadaiah M, Rao PN, Harish P, Bhuyan AK (2007) High affinity binding of Bcl-XL to cytochrome c:possible relevance for interception of translocated cytochrome c in apoptosis. Biochim Biophys Acta 1774:1370–1379CrossRefPubMedGoogle Scholar
  52. Zhao D, Li L, Zhou J (2018) Simulation insight into the cytochrome c adsorption on graphene and graphene oxide surfaces. Appl Surf Sci 428:825–834CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations