Skip to main content

Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants

An Erratum to this article was published on 31 January 2017

Abstract

Silicon (Si) is a nonessential, beneficial micronutrient for plants. It increases the plant stress tolerance in relation to its accumulation capacity. In this work, root Si transporter genes were characterized in 17 different plants and inferred for their Si-accumulation status. A total of 62 Si transporter genes (31 Lsi1 and 31 Lsi2) were identified in studied plants. Lsi1s were 261–324 residues protein with a MIP family domain whereas Lsi2s were 472–547 residues with a citrate transporter family domain. Lsi1s possessed characteristic sequence features that can be employed as benchmark in prediction of Si-accumulation status/capacity of the plants. Silicic acid selectivity in Lsi1s was associated with two highly conserved NPA (Asn-Pro-Ala) motifs and a Gly-Ser-Gly-Arg (GSGR) ar/R filter. Two NPA regions were present in all Lsi1 members but some Ala substituted with Ser or Val. GSGR filter was only available in the proposed high and moderate Si accumulators. In phylogeny, Lsi1s formed three clusters as low, moderate and high Si accumulators based on tree topology and availability of GSGR filter. Low-accumulators contained filters WIGR, AIGR, FAAR, WVAR and AVAR, high-accumulators only with GSGR filter, and moderate-accumulators mostly with GSGR but some with A/CSGR filters. A positive correlation was also available between sequence homology and Si-accumulation status of the tested plants. Thus, availability of GSGR selectivity filter and sequence homology degree could be used as signatures in prediction of Si-accumulation status in experimentally uncharacterized plants. Moreover, interaction partner and expression profile analyses implicated the involvement of Si transporters in plant stress tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ashraf MA, Morshed MM, Ahammad AS, Morshed MN (2013) Computational study of silicon transporter protein in rice and wheat. Int J Comput Bioinform Silico Model 2:199–205

    Google Scholar 

  • Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci 105:7177–7181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bienert G, Chaumont F (2011) Plant aquaporins: roles in water homeostasis, nutrition, and signaling processes. In: Geisler M, Venema K (eds) Transporters and pumps in plant signaling processes. Springer, Berlin, pp 3–36

    Chapter  Google Scholar 

  • Brodersen P, Petersen M, Bjørn Nielsen H et al (2006) Arabidopsis MAP kinase 4 regulates salicylic acid-and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    CAS  Article  PubMed  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    CAS  Article  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl Acids Res 34:W116–W118

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Eastmond PJ, Li Y, Graham IA (2003) Is trehalose-6-phosphate a regulator of sugar metabolism in plants? J Exp Bot 54:533–537

    CAS  Article  PubMed  Google Scholar 

  • Facchini PJ, Bird DA, St-Pierre B (2004) Can Arabidopsis make complex alkaloids? Trends Plant Sci 9:116–122

    CAS  Article  PubMed  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    CAS  Article  PubMed  Google Scholar 

  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic Amst 123:521–530

    CAS  Article  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Func Integr Genom 7:263–289

    CAS  Article  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucl Acids Res 41:D808–D815

    CAS  Article  PubMed  Google Scholar 

  • Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol conducting channel and the basis for its selectivity. Science 290:481–486

    CAS  Article  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607

    Chapter  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186

    CAS  Article  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) [GSDS: a gene structure display server]. Yi chuan = Hereditas/Zhongguo yi chuan xue hui bian ji 29:1023–1026

    CAS  Article  Google Scholar 

  • Harries WE, Akhavan D, Miercke LJ, Khademi S, Stroud RM (2004) The channel architecture of aquaporin 0 at a 2.2 Å resolution. Proc Natl Acad Sci 101:14045–14050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

    Article  Google Scholar 

  • Ilan B, Tajkhorshid E, Schulten K, Voth GA (2004) The mechanism of proton exclusion in aquaporin channels. Proteins 55:223–228

    CAS  Article  PubMed  Google Scholar 

  • Jia-Wen WU, Yu SHI, Yong-Xing ZHU, Yi-Chao WA, Hai-Jun GO (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23:815–825

    Article  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    CAS  Article  PubMed  Google Scholar 

  • Kim YH, Khan AL, Kim DH et al (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ (2012) Plant defense compounds: systems approaches to metabolic analysis. Annu Rev Phytopathol 50:155–173

    CAS  Article  PubMed  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    CAS  Article  PubMed  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450

    CAS  Article  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    CAS  Article  PubMed  Google Scholar 

  • Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    CAS  Article  PubMed  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    CAS  Article  Google Scholar 

  • Ma JF (2010) Si transporters in higher plant. In: Jhon PT, Bienert PG (eds) MIPs and their role in the exchange of materials. Landes Bioscience, Austin, pp 99–109

    Chapter  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    CAS  Article  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    CAS  Article  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    CAS  Article  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Kazunori T, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    CAS  Article  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucl Acids Res 39:D225–D229

    CAS  Article  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflüger Arch Eur J Phy 456:679–686

    CAS  Article  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009a) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009b) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    CAS  Article  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    CAS  Article  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N et al (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46

    CAS  Article  PubMed  Google Scholar 

  • Romiti M (2010) Entrez nucleotide and entrez protein FAQs. Gene 1:270

    Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    CAS  Article  PubMed  Google Scholar 

  • Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28:405–420

    CAS  Article  PubMed  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    CAS  Article  PubMed  Google Scholar 

  • Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436

    CAS  Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Timothy TL, Bodén BM, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucl Acids Res 37:202–208

    Article  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421

    CAS  Article  PubMed  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    CAS  Article  PubMed  Google Scholar 

  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307

    CAS  Article  Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10534-017-9995-z.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1233 kb)

Supplementary material 2 (XLSX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vatansever, R., Ozyigit, I.I., Filiz, E. et al. Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants. Biometals 30, 185–200 (2017). https://doi.org/10.1007/s10534-017-9992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-9992-2

Keywords

  • ar/R Selectivity filter
  • Accumulator
  • Silicic acid
  • Motifs
  • Perturbation