Skip to main content
Log in

Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In plants, metal transporters are responsible for metal uptake, translocation and homeostasis. These metals include essential nutrients such as zinc (Zn) and manganese (Mn) or non-essential metals like cadmium (Cd) and lead (Pb). Although a few metal transporters have been well characterized in model plants, little is known about their functionality in rapeseed (Brassica napus). In the study, 22 NRAMP transporter genes from B. napus genome were identified and annotated using bioinformatics and high-throughput RNA-sequencing (RNA-seq). Based on the sequence identity, these NRAMP transporters can be classified into 6 subfamilies. RNA-seq analysis revealed that 19 NRAMP transporters were detected and some of the genes were well confirmed by qRT-PCR. Ten NRAMP transporters (45.5%, 10/22) were found to be differentially expressed (> 2 fold change, p < 0.05) under Cd exposure. As an example, we specified expression of BnNRAMP1b under Cd exposure. BnNRAMP1b is a constitutive gene expressing throughout all development stages including seedlings, vegetative tissue, flowers and siliques. Expression of BnNRAMP1b can be strongly induced in seedlings exposed to 80, 160 and 240 μM Cd. To define whether BnNRAMP1b was specific for Cd transport, a yeast (wild-type, BY4741) system with its mutants (ycf1, zrc1, and smf1) defective in transport activity of Cd, Zn and Mn, respectively were tested. Compared to empty vectors (pYES2), cells carrying BnNRAMP1b can rescue the transport functions. As a consequence, excess Cd, Zn and Mn were taken in the cells, which led to metal toxicity, suggesting that BnNRAMP1b is responsible for transport of these metals in B. napus. Using our previously created degradome datasets, we found that BnNRAMP1b could be cleaved by miR167, suggesting that BnNRAMP1b is a target of miR167 in B. napus. The contrasting expression pattern of BnNRAMP1b and miR167 under Cd stress supported the post-transcriptional regulation of BnNRAMP1b by miR167.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bhati KK, Aggarwal S, Sharma S, Mantri S, Singh SP, Bhalla S et al (2014) Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.). Plant Sci 224:74–85

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellier M, Privé G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA 92:10089–10093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yang ZM, Su Y, Han FX, Monts DL (2009) Phytoremediation of heavy metal/metalloid-contaminated soils. In: Steinberg RV, Steinberg RV (eds) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publishers, New York

    Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP l from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie FL, Zhang BH (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 4:6122

    Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of amammalian proton-coupled metal-ion transporter. Nature 38:482–488

    Article  Google Scholar 

  • Guo K, Xia K, Yang ZM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 5:3443–3452

    Article  Google Scholar 

  • Ihnatowicz A, Siwinska J, Meharg AA, Carey M, Koornneef M, Reymond M (2014) Conserved histidine of metal transporter AtNRAMP1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures. New Phytol 202:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, KuramataM Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of lowcadmium rice. Proc Natl Acad Sci USA 109:19166–19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Boil 14:R36

    Article  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. Febs Letters 581:2263–2272

    PubMed  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U et al (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) In mineral nutrition of higher plants. Academic Press, London, pp 314–379

    Google Scholar 

  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801

    Article  CAS  PubMed  Google Scholar 

  • Oomen RJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Jiang M, Li H, Che LL, Yang ZM (2011) Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity. Plant Cell Environ 34:752–763

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vatanesever R, Filiz E, Ozyigit II (2016) In silico analysis of Mn transporters (NRAMP) in various plant species. Mol Biol Rep 43:151–163

    Article  Google Scholar 

  • Wang T, Wu M (2006) An ATP-binding cassette transporter related to yeast vacuolar ScYCF1 is important for Cd sequestration in Chlamydomonas reinhardtii. Plant Cell Environ 10:1901–1912

    Article  Google Scholar 

  • Wang F, Wang M, Liu Z, Shi Y, Han T, Ye Y, Gong N, Sun J, Zhu C (2015) Different responses of low grain-Cd-accumulating and high grain-Cd accumulating rice cultivars to Cd stress. Plant Physiol Biochem 96:261–269

    Article  CAS  PubMed  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA 107:18381–18385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF (2013) A node-based switch for preferential distribution of manganese in rice. Nat Commun 4:2442

    Article  PubMed  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (21377055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Min Yang.

Additional information

Jin Guo Meng and Xian Duo Zhang authors have contributed equally to this work.

lectronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J.G., Zhang, X.D., Tan, S.K. et al. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus . Biometals 30, 917–931 (2017). https://doi.org/10.1007/s10534-017-0057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0057-3

Keywords

Navigation