Skip to main content
Log in

Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In response to the widespread presence of inorganic Hg in the environment, bacteria have evolved resistance systems with mercuric reductase (MerA) as the key enzyme. MerA enzymes have still not been well characterized from gram positive bacteria. Current study reports physico-chemical, kinetic and structural characterization of MerA from a multiple heavy metal resistant strain of Lysinibacillus sphaericus, and discusses its implications in bioremediation application. The enzyme was homodimeric with subunit molecular weight of about 60 kDa. The Km and Vmax were found to be 32 µM of HgCl2 and 18 units/mg respectively. The enzyme activity was enhanced by β-mercaptoethanol and NaCl up to concentrations of 500 µM and 100 mM respectively, followed by inhibition at higher concentrations. The enzyme showed maximum activity in the pH range of 7–7.5 and temperature range of 25–50 °C, with melting temperature of 67 °C. Cu2+ exhibited pronounced inhibition of the enzyme with mixed inhibition pattern. The enzyme contained FAD as the prosthetic group and used NADPH as the preferred electron donor, but it showed slight activity with NADH as well. Structural characterization was carried out by circular dichroism spectrophotometry and X-ray crystallography. X-ray confirmed the homodimeric structure of enzyme and gave an insight on the residues involved in catalytic binding. In conclusion, the investigated enzyme showed higher catalytic efficiency, temperature stability and salt tolerance as compared to MerA enzymes from other mesophiles. Therefore, it is proposed to be a promising candidate for Hg2+ bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K (1987) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bafana A, Krishnamurthi K, Patil M, Chakrabarti T (2010) Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. J Hazard Mater 177:481–486

    Article  CAS  PubMed  Google Scholar 

  • Bafana A, Chakrabarti T, Krishnamurthi K (2015) Mercuric reductase activity of multiple heavy metal-resistant Lysinibacillus sphaericus G1. J Basic Microbiol 55:285–292

    Article  CAS  PubMed  Google Scholar 

  • Baldi F, Gallo M, Marchetto D, Faleri C, Maida I, Fani R (2013) Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues. Environ Res 125:188–196

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  PubMed  PubMed Central  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox B, Walsh CT (1982) Mercuric reductase: purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J Biol Chem 257:2498–2503

    CAS  PubMed  Google Scholar 

  • Gachhui R, Chaudhuri J, Ray S, Pahan K, Mandal A (1997) Studies on mercury-detoxicating enzymes from a broad-spectrum mercury-resistant strain of Flavobacterium rigense. Folia Microbiol (Praha) 42:337–343

    Article  CAS  Google Scholar 

  • Ghosh S, Sadhukhan PC, Chaudhuri J, Ghosh DK, Mandal A (1999) Purification and properties of mercuric reductase from Azotobacter chroococcum. J Appl Microbiol 86:7–12

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Johs A, Harwood IM, Parks JM, Nauss RE, Smith JC, Liang L, Miller SM (2011) Structural characterization of intramolecular Hg2+ transfer between flexibly linked domains of mercuric ion reductase. J Mol Biol 413:639–656

    Article  CAS  PubMed  Google Scholar 

  • Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers AO, Pai EF, Miller SM (2005) NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Biochemistry 44:11402–11416

    Article  CAS  PubMed  Google Scholar 

  • Ledwidge R, Hong B, Dötsch V, Miller SM (2010) NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols. Biochemistry 49:8988–8998

    Article  CAS  PubMed  Google Scholar 

  • Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80:374–381

    Article  CAS  PubMed  Google Scholar 

  • Mahbub KR, Krishnan K, Megharaj M, Naidu R (2016) Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere 144:330–337

    Article  CAS  PubMed  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner PS, Falkinham JO (1984) Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum. J Bacteriol 157:669–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Møller AK, Barkay T, Hansen MA, Norman A, Hansen LH, Sørensen SJ, Boyd ES, Kroer N (2014) Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiol Ecol 87:52–63

    Article  PubMed  Google Scholar 

  • Moore MJ, Distefano MD, Walsh CT, Schiering N, Pai EF (1989) Purification, crystallization, and preliminary x-ray diffraction studies of the flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607. J Biol Chem 264:14386–14388

    CAS  PubMed  Google Scholar 

  • Olson GJ, Porter FD, Rubinstein J, Silver S (1982) Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J Bacteriol 151:1230–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Poulain AJ, Aris-Brosou S, Blais JM, Brazeau M, Keller WB, Paterson AM (2015) Microbial DNA records historical delivery of anthropogenic mercury. ISME J 9:2541–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rennex D, Cummings RT, Pickett M, Walsh CT, Bradley M (1993) Role of tyrosine residues in Hg(II) detoxification by mercuric reductase from Bacillus sp. strain RC607. Biochemistry 32:7475–7478

    Article  CAS  PubMed  Google Scholar 

  • Sayed A, Ghazy MA, Ferreira AJ, Setubal JC, Chambergo FS, Ouf A, Adel M, Dawe AS, Archer JA, Bajic VB, Siam R, El-Dorry H (2014) A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea. J Biol Chem 289:1675–1687

    Article  CAS  PubMed  Google Scholar 

  • Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF (1991) Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352:168–172

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, Deckwer W (2005) Kinetics of mercury reduction by Serratia marcescens mercuric reductase expressed by Pseudomonas putida strains. Eng Life Sci 5:415–424

    Article  CAS  Google Scholar 

  • Vetriani C, Chew YS, Miller SM, Yagi J, Coombs J, Lutz RA, Barkay T (2005) Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Appl Environ Microbiol 71:220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Amit Bafana is thankful to Indian National Science Academy (INSA), India, for the award of INSA Visiting Fellowship (No. SP/VF-30/2014-15) to carry out part of this study at Indian Institute of Science, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bafana.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Gel filtration chromatography for estimation of MerA native molecular weight. The calibration proteins were thyroglobulin—670 kDa, γ-globulin—158 kDa, ovalbumin—44 kDa, myoglobin—17 kDa, and vitamin B12—1.3 kDa. Arrow represents elution of MerA (JPEG 25 kb)

Supplementary Fig. S2

Fluorescence-based thermal shift assay for MerA using SYPRO Orange. Black line represents the denaturation curve, while red line shows modeled curve (JPEG 30 kb)

Supplementary Fig. S3

Determination of MerA secondary structure by circular dichroism spectrometry. Based on the predicted spectrum, MerA contained 33.75% α helix and 15.49% β strand (JPEG 30 kb)

Supplementary Fig. S4

Sequence alignment of L. sphaericus MerA enzyme with homologs. Homologous proteins are indicated by their PDB id, while the L. sphaericus enzyme is shown as merA. Identical residues are shaded with red background, while similar residues are shown in blue box (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bafana, A., Khan, F. & Suguna, K. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1. Biometals 30, 809–819 (2017). https://doi.org/10.1007/s10534-017-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0050-x

Keywords

Navigation