Skip to main content
Log in

Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu2+ ~ Al3+ > Zn2+ ≥ Ca2+ ~ Mg2+ ~ Mn2+ (<20% inhibition). Binding was also inhibited by pharmaceutical iron chelators (desferoxamine or EDTA) or by higher concentrations of weak iron chelators (citrate or silibinin). Investigation of the physiological effects of iron binding by curcumin revealed that curcumin uptake by cultured cells was reduced >80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Badria FA, Ibrahim AS et al (2015) Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats. PLoS ONE 10(7):e0134156

    Article  PubMed  PubMed Central  Google Scholar 

  • Bares JM, Berger J et al (2008) Silybin treatment is associated with reduction in serum ferritin in patients with chronic hepatitis C. J Clin Gastroenterol 42(8):937–944

    Article  CAS  PubMed  Google Scholar 

  • Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6(4):367–377

    Article  CAS  PubMed  Google Scholar 

  • Bernabe-Pineda M, Ramirez-Silva MT et al (2004) Spectrophotometric and electrochemical determination of the formation constants of the complexes curcumin-Fe(III)-water and Curcumin-Fe(II)-water. Spectrochim Acta A Mol Biomol Spectrosc 60(5):1105–1113

    Article  PubMed  Google Scholar 

  • Borsari M, Gabbi C et al (2001) Silybin, a new iron-chelating agent. J Inorg Biochem 85(2–3):123–129

    Article  CAS  PubMed  Google Scholar 

  • Chin D, Huebbe P et al (2014) Curcumin may impair iron status when fed to mice for six months. Redox Biol 2:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari E, Arezzini B et al (2009) Synthesis and characterization of glucosyl-curcuminoids as Fe3 + suppliers in the treatment of iron deficiency. Biometals 22(5):701–710

    Article  CAS  PubMed  Google Scholar 

  • Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Garcea G, Jones DJ et al (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90(5):1011–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grootveld M, Bell JD et al (1989) Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem 264(8):4417–4422

    CAS  PubMed  Google Scholar 

  • Guo S, Frazer DM et al (2016) Iron homeostasis: transport, metabolism, and regulation. Curr Opin Clin Nutr Metab Care 19(4):276–281

    Article  CAS  PubMed  Google Scholar 

  • Hatcher H, Planalp R et al (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65(11):1631–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ireson C, Orr S et al (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61(3):1058–1064

    CAS  PubMed  Google Scholar 

  • Ishihara M, Sakagami H (2005) Re-evaluation of cytotoxicity and iron chelation activity of three beta-diketones by semiempirical molecular orbital method. Vivo 19(1):119–123

    CAS  Google Scholar 

  • Jiao Y, Wilkinson JT et al (2006) Iron chelation in the biological activity of curcumin. Free Radic Biol Med 40(7):1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Wilkinson JT et al (2009) Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 113(2):462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    Article  CAS  PubMed  Google Scholar 

  • Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14(2):141–153

    PubMed  Google Scholar 

  • Khalil MI, Al-Zahem AM et al (2013) Synthesis, Characterization, Mossbauer Parameters, and Antitumor Activity of Fe(III) Curcumin Complex. Bioinorg Chem Appl 2013:982423

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunnumakkara AB, Bordoloi D et al (2016) Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol 174(11):1325–1348

    Article  PubMed  Google Scholar 

  • Martell AE, Smith RM (1974) Critical stability constants. Plenum Press, New York

    Google Scholar 

  • Messner DJ, Kowdley KV (2008) Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron. BMC Gastroenterol 8:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Messner DJ, Sivam G et al (2009) Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells. Liver Int 29(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Messner DJ, Robinson T et al (2017) Curcumin and turmeric modulate the tumor-promoting effects of iron in vitro. Nutr Cancer 69(3):481–489

    Article  CAS  PubMed  Google Scholar 

  • Minear S, O’Donnell AF et al (2011) Curcumin inhibits growth of Saccharomyces cerevisiae through iron chelation. Eukaryot Cell 10(11):1574–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobarra N, Shanaki M et al (2016) A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Oncol Stem Cell Res 10(4):239–247

    PubMed  PubMed Central  Google Scholar 

  • Motekaitis RJ, Martell AE (1994) The iron(III) and iron(II) complexes of nitrilotriacetic acid. J Coord Chem 31(1):67–78

    Article  CAS  Google Scholar 

  • Motekaitis RJ, Rogers BE et al (1996) Stability and structure of activated macrocycles. ligands with biological applications. Inorg Chem 35(13):3821–3827

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Nakayachi T et al (2004) Induction of apoptosis by beta-diketones in human tumor cells. Anticancer Res 24(2B):711–717

    CAS  PubMed  Google Scholar 

  • Petrat F, Rauen U et al (1999) Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK. Hepatology 29(4):1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Pietrangelo A (2016) Iron and the liver. Liver Int 36(Suppl 1):116–123

    Article  CAS  PubMed  Google Scholar 

  • Smith RMAM, Arthur E (2003) NIST critically selected stability constants of metal complexes database. N. I. o. S. a. Technology, Gaithersburg

    Google Scholar 

  • Sreejayan, Rao MN (1994) Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46(12):1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Swierenga SH, Whitfield JF et al (1980) Regulation of proliferation of normal and neoplastic rat liver cells by calcium and cyclic AMP. Ann N Y Acad Sci 349:294–311

    Article  CAS  PubMed  Google Scholar 

  • Tomisek AJ, Winkler EM et al (1975) Fluorometry of citrate in serum, with use of citrate (pro-3S)-lyase. Clin Chem 21(6):730–734

    CAS  PubMed  Google Scholar 

  • World Health Organization (1999) WHO monographs on selected medicinal plants. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Cheryl Wong and Brian S. Kunakom, Bastyr University, for technical assistance and supporting experiments. We thank Dr. Muhammed Majeed and colleagues at Sabinsa Corporation for generously providing the purified curcuminoids (C3 complex®) and turmeric used in this study. Preliminary aspects of this work appeared in abstract form (Messner et al. FASEB J April 2015 29:773.7). Supported by the National Center for Complementary and Alternative Medicine (Grant AT3448 to DJM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Messner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messner, D.J., Surrago, C., Fiordalisi, C. et al. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids. Biometals 30, 699–708 (2017). https://doi.org/10.1007/s10534-017-0038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0038-6

Keywords

Navigation