Skip to main content
Log in

Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In plant cells, either excess or insufficient iron (Fe) concentration triggers stress responses, therefore it is strictly controlled. Proteasome-mediated degradation through ubiquitination of Fe homeostasis proteins has just become the focus of research in recent years. Deactivating ubiquitin ligases, COP9 signalosome has a central importance in the translational control of various stress responses. The aim of the study was to investigate COP9 signalosome in Fe deficiency response of Strategy I plants. In silico analysis of a set of Fe-deficiency-responsive genes was conducted against the transcriptome of Arabidopsis csn mutant lines using Genevestigator software. Induced and suppressed genes were clustered in a hierarchical way and gene ontology enrichment categories were identified. In wild-type Arabidopsis, CSN genes did not respond to iron deficiency. In csn mutant lines, under Fe-sufficient conditions, hundreds of Fe-deficiency-responsive genes were misregulated. Among the ones previously characterized for their physiological roles under Fe deficiency IRT1, NAS4, BTS, NRAMP1 were down-regulated while AHA2, MTP8, FRD3 were up-regulated. Unexpectedly, from those which were regulated in opposite ways, some had been repeatedly shown to be tightly co-regulated by the same transcription factor, FIT. Two proteins from DELLA family, which were reported to interact with FIT to repress its downstream, were found to be strikingly repressed in csn mutants. Overall, the study underlined that the absence of a functional CSN greatly impacted the regulation of Fe homeostasis-related genes, in a manner which cannot be explained simply by the induction of the master transcription factor, FIT. Correct expression of Fe deficiency-responsive genes requires an intact COP9 signalosome in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Aksoy E, Jeong IS, Koiwa H (2013) Loss of function of arabidopsis C-terminal domain phosphatase-like 1 activates iron deficiency responses at the transcriptional level. Plant Physiol 161:330–345

    Article  CAS  PubMed  Google Scholar 

  • Andreasson E et al (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J, Briat J-F, Cellier F, Gaymard F (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    Article  CAS  PubMed  Google Scholar 

  • Ascencio-Ibáñez JT, Sozzani R, Lee T-J, Chu T-M, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Backes C et al (2007) GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res 35:W186–W192

    Article  PubMed  PubMed Central  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci USA 108:450–458. doi:10.1073/pnas.1100659108

    Article  Google Scholar 

  • Barth E, Hübler R, Baniahmad A, Marz M (2016) The evolution of COP9 signalosome in unicellular and multicellular organisms. Genome Biol Evol 8(4):1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 50(1):289–300

    Google Scholar 

  • Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20:124–133. doi:10.1016/j.tplants.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  • Buckhout TJ, Yang TJW, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC genomics 10:1

    Article  Google Scholar 

  • Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58:991–999

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell Online 16:3400–3412

    Article  CAS  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110. doi:10.1104/pp.103.025122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinneny JR et al (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  • Dohmann EMN, Levesque MP, Isono E, Schmid M, Schwechheimer C (2008) Auxin responses in mutants of the Arabidopsis constitutive photomorphogenic9 signalosome. Plant Physiol 147:1369–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohmann EMN, Nill C, Schwechheimer C (2010) DELLA proteins restrain germination and elongation growth in Arabidopsis thaliana COP9 signalosome mutants. Eur J Cell Biol 89:163–168

    Article  CAS  PubMed  Google Scholar 

  • Driessen P, Deckers J, Spaargaren O, Nachtergaele F (2000) In: Lecture notes on the major soils of the world, vol 94. Food and Agriculture Organization (FAO)

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eroglu S et al (2017) Metal tolerance protein 8 mediates manganese homeostasis and iron re-allocation during seed development and germination. Plant Physiol. doi:10.1104/pp.16.01646

    PubMed  PubMed Central  Google Scholar 

  • Eroglu S, Meier B, von Wirén N, Peiter E (2016) The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis. Plant Physiol 170:1030–1045

    Article  CAS  PubMed  Google Scholar 

  • Feng H, An F, Zhang S, Ji Z, Ling H-Q, Zuo J (2006) Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe (III)-chelate reductase gene AtFRO6. Plant Physiol 140:1345–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franciosini A, Serino G, Deng X-W (2014) COP9 Signalosome Network Mol Biol:313-332

  • Gayomba SR, Zhai Z, H-i Jung, Vatamaniuk OK (2015) Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front Plant Sci. doi:10.3389/fpls.2015.00155

    PubMed  PubMed Central  Google Scholar 

  • Gusmaroli G, Figueroa P, Serino G, Deng XW (2007) Role of the MPN subunits in COP9 signalosome assembly and activity, and their regulatory interaction with Arabidopsis Cullin3-based E3 ligases. Plant Cell 19:564–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant 5:27–42. doi:10.1093/mp/ssr065

    Article  CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21:770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176:709–714. doi:10.1016/j.plantsci.2009.02.011

    Article  CAS  Google Scholar 

  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA 105:10619–10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong IS et al (2013) Arabidopsis C-terminal domain phosphatase-like 1 functions in miRNA accumulation and DNA methylation. PLoS ONE 8:e74739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H-S et al (2013) Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci USA 110:14474–14479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280. doi:10.1016/j.febslet.2007.04.043

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2014) Iron sensors and signals in response to iron deficiency. Plant Sci 24:36–43

    Article  Google Scholar 

  • Li W, Santi S, Tan C, Schmidt W (2007) Dissecting P-type H+-ATPase-mediated proton extrusion in Arabidopsis. In: 18th International Conference on Arabidopsis Research, Beijing, China

  • Li H, Wang L, Yang ZM (2015) Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Gene 554:16–24

    Article  CAS  PubMed  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis root. Plant Cell Online 22:2219–2236. doi:10.1105/tpc.110.074096

    Article  CAS  Google Scholar 

  • Meiser J, Lingam S, Bauer P (2011) Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiol 157:2154–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel K, Abderhalden O, Bruggmann R, Dudler R (2006) Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites. Plant Mol Biol 62:561–578

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190. doi:10.1007/s00425-005-0165-0

    Article  CAS  PubMed  Google Scholar 

  • Narsai R, Law SR, Carrie C, Xu L, Whelan J (2011) In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol 157:1342–1362. doi:10.1104/pp.111.183129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obayashi T et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–D869

    Article  CAS  PubMed  Google Scholar 

  • Oravecz A, Baumann A, Máté Z, Brzezinska A, Molinier J, Oakeley EJ, Ádám É, Schäfer E, Nagy F, Ulm R (2006) Constitutively Photomorphogenic1 Is required for the UV-B response in Arabidopsis. Plant Cell 18(8):1975–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697. doi:10.1038/17800

    Article  CAS  PubMed  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Keller A, Backes C, Philippar K, Lenhof HP, Bauer P (2011) Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana. BMC Plant Biol 11:87. doi:10.1186/1471-2229-11-87

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin L-J, Lo J-C, Chen G-H, Callis J, Fu H, Yeh K-C (2013) IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis. Plant Cell Online 25:3039–3051. doi:10.1105/tpc.113.115212

    Article  CAS  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433

    Article  CAS  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  • Sivitz A, Grinvalds C, Barberon M, Curie C, Vert G (2011) Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses. Plant J 66:1044–1052. doi:10.1111/j.1365-313X.2011.04565.x

    Article  CAS  PubMed  Google Scholar 

  • Sivitz AB, Hermand V, Curie C, Vert G (2012) Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS ONE 7:e44843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S et al. (2016) CSN6, a subunit of the COP9 signalosome, is involved in early response to iron deficiency in Oryza sativa Scientific reports 6

  • Vatansever R, Filiz E, Eroglu S (2017) Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification. Biometals. doi:10.1007/s10534-017-9997-x

    Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189

    Article  CAS  PubMed  Google Scholar 

  • von Wirén N, Bennett MJ (2016) Crosstalk between gibberellin signaling and iron uptake in plants: an Achilles’ heel for modern cereal varieties? Dev Cell 37:110–111

    Article  Google Scholar 

  • Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286

    Article  CAS  PubMed  Google Scholar 

  • White P, Brown P (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild M et al (2016) Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses. Dev Cell 37:190–200

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Li L, Du J, Yuan Y, Cheng X, Ling H-Q (2005) Molecular and biochemical characterization of the Fe (III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46:1505–1514

    Article  CAS  PubMed  Google Scholar 

  • Yates G, Sadanandom A (2013) Ubiquitination in plant nutrient utilization. Front Plant Sci. doi:10.3389/fpls.2013.00452

    PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Seckin Eroglu thanks Scientific and Technological Council of Turkey (Ankara, Turkey) for the fellowship through BIDEB-2232 program (Project no: 116C059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Aksoy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 417 kb)

Supplementary material 2 (DOCX 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroglu, S., Aksoy, E. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis. Biometals 30, 685–698 (2017). https://doi.org/10.1007/s10534-017-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0036-8

Keywords

Navigation