Skip to main content
Log in

Structural characterization of pyoverdines produced by Pseudomonas putida KT2440 and Pseudomonas taiwanensis VLB120

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The previously unknown sequences of several pyoverdines (PVD) produced by a biotechnologically-relevant bacterium, namely, Pseudomonas taiwanensis VLB120, were characterized by high performance liquid chromatography (HPLC)–high resolution mass spectrometry (HRMS). The same structural characterization scheme was checked before by analysis of Pseudomonas sp. putida KT2440 samples with known PVDs. A new sample preparation strategy based on solid-phase extraction was developed, requiring significantly reduced sample material as compared to existing methods. Chromatographic separation was performed using hydrophilic interaction liquid chromatography with gradient elution. Interestingly, no signals for apoPVDs were detected in these analyses, only the corresponding aluminum(III) and iron(III) complexes were seen. The chromatographic separation readily enabled separation of PVD complexes according to their individual structures. HPLC-HRMS and complementary fragmentation data from collision-induced dissociation and electron capture dissociation enabled the structural characterization of the investigated pyoverdines. In Pseudomonas sp. putida KT2240 samples, the known pyoverdines G4R and G4R A were readily confirmed. No PVDs have been previously described for Pseudomonas sp. taiwanensis VLB120. In our study, we identified three new PVDs, which only differed in their acyl side chains (succinic acid, succinic amide and malic acid). Peptide sequencing by MS/MS provided the sequence Orn-Asp-OHAsn-Thr-AcOHOrn-Ser-cOHOrn. Of particular interest is the presence of OHAsn, which has not been reported as PVD constituent before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation on peptide, nucleic acids and other polar compounds. J Chrom A 499:177–196

    Article  CAS  Google Scholar 

  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091. doi:10.1111/j.1462-2920.2008.01838.x

    Article  CAS  PubMed  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 10:209–228. doi:10.1111/j.1574-6968.1993.tb05868.x

    Article  CAS  PubMed  Google Scholar 

  • Bultreys A, Gheysen I, Wathelet B, Maraite H, de Hoffmann E (2003) High-performance liquid chromatography analyses of pyoverdin siderophores differentiate among phytopathogenic fluorescent Pseudomonas species. Appl Environ Microbiol 69:1143–1153. doi:10.1128/AEM.69.2.1143-1153.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi V, Kumar A (2014) Metabolism dependent chemotaxis of Pseudomonas aeruginosa N1 towards anionic detergent sodium dodecyl sulfate. Indian J Microbiol 54:134–138. doi:10.1007/s12088-013-0426-8

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Thomas MG, O’Connor SE, Hubbard BK, Burkart MD, Walsh CT (2001) Aminoacyl-S-enzyme intermediates in beta-hydroxylations and alpha, beta-desaturations of amino acids in peptide antibiotics. Biochemistry 40:11651–11659

    Article  CAS  PubMed  Google Scholar 

  • Fuchs R, Schafer M, Geoffroy V, Meyer J-M (2001) Siderotyping a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1:31–57. doi:10.2174/1568026013395542

    Article  CAS  PubMed  Google Scholar 

  • Greenwald J, Zeder-Lutz G, Hagege A, Celia H, Pattus F (2008) The metal dependence of pyoverdine interactions with its outer membrane receptor FpvA. J Bacteriol 190:6548–6558. doi:10.1128/JB.00784-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen J (1981) Presence of ß-lactamase and penicillin acylase in a Pseudomonas sp. utilizing benzylpenicillin as a carbon source. J Gen Appl Microbiol 27:499–503

    Article  CAS  Google Scholar 

  • Kilz S, Lenz C, Fuchs R, Budzikiewicz H (1999) A fast screening method for the identification of siderophores from fluorescent Pseudomonas spp. by liquid chromatography/electrospray mass spectrometry. J Mass Spectrom 34:281–290

    Article  CAS  PubMed  Google Scholar 

  • Köhler KA, Rückert C, Schatschneider S, Vorhölter FJ, Szczepanowski R, Blank LM, Niehaus K, Goesmann A, Pühler A, Kalinowski J, Schmid A (2013) Complete genome sequence of Pseudomonas sp. strain VLB120 a solvent tolerant, styrene degrading bacterium, isolated from forest soil. J Biotechnol 168:729–730. doi:10.1016/j.jbiotec.2013.10.016

    Article  PubMed  Google Scholar 

  • Lin Z, Falkinham JO 3rd, Tawfik KA, Jeffs P, Bray B, Dubay G, Cox JE, Schmidt EW (2012) Burkholdines from Burkholderia ambifaria: antifungal agents and possible virulence factors. J Nat Prod 75:1518–1523. doi:10.1021/np300108u

    Article  CAS  PubMed  Google Scholar 

  • Linget C, Azadi P, MacLeod JK, Dell A, Abdallah MA (1992) Bacterial siderophores: the structures of the pyoverdins of Pseudomonas fluorescens ATCC 13525. Tetrahedron Lett 33:1737–1740

    Article  CAS  Google Scholar 

  • Merz C, Demange P, Cung MT, Dell A, Linget C, Abdallah MA (1991) Bacterial siderophores: the conformation of diamagnetic complexes of Pseudomonas aeruginosa pyoverdin. J Inorg Chem 43:142. doi:10.1016/0162-0134(91)84136-W

    Google Scholar 

  • Meyer J-M, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2007) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271. doi:10.1007/s10534-007-9115-6

    Article  PubMed  Google Scholar 

  • Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JB, Buhler B, Panke S, Witholt B, Schmid A (2007) Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120DeltaC. Biotechnol Bioeng 98:1219–1229. doi:10.1002/bit.21496

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Hayen H, Volmer DA (2016) Characterization of the iron-binding properties of pyoverdine using electron-capture dissociation-tandem mass spectrometry. Biometals 29:53–60. doi:10.1007/s10534-015-9895-z

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff P, Fohlmann J (1984) Letter to the editors. Biomed Mass Spectrom 11:601

    Article  CAS  PubMed  Google Scholar 

  • Salah el Din AL, Kyskik P, Stephan D, Abdallah MA (1997) Bacterial iron transport: structure elucidation by FAB-MS and by 2D NMR (1H, 13C, 15N) of pyoverdin G4R, a peptidic siderophore produced by a nitrogen-fixing strain of Pseudomonas putida. Tetrahedron 53:12539–12552

    Article  CAS  Google Scholar 

  • Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO, Mesbah M, Youssef D, Khalifa S, Schmidt EW (2010) Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Org Lett 12:664–666. doi:10.1021/ol9029269

    Article  CAS  PubMed  Google Scholar 

  • Weber G, von Wiren N, Hayen H (2008) Hydrophilic interaction chromatography of small metal species in plants using sulfobetaine- and phosphorylcholine-type zwitterionic stationary phases. J Sep Sci 31:1615–1622. doi:10.1002/jssc.200800060

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Aristilde L (2015) Structural characterization of multiple pyoverdines secreted by two Pseudomonas strains using liquid chromatography-high resolution tandem mass spectrometry with varying dissociation energies. Anal Bioanal Chem 407:4629–4638. doi:10.1007/s00216-015-8659-5

    Article  CAS  PubMed  Google Scholar 

  • Winkler S, Ockels W, Budzikiewicz H, Korth H, Pulverer G (1986) 2-Hydroxy-4-methoxy-5-methylpyridin-N-oxid ein Al3+ bindender Metabolit von Pseudomonas cepacia. Z Naturforsch 41c:807–808

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Till Tiso and Prof. Dr. Lars M. Blank (Institute of Applied Microbiology, RWTH Aachen University, Germany) for providing the Pseudomonas putida sample materials and HILICON AB for providing the iHILIC® Fusion column. Georgina Thyssen and Michael Holtkamp (Institute of Inorganic and Analytical Chemistry, University of Münster, Germany) are acknowledged for the TXRF and ICP-MS measurements. We also thank Dr. Benedikt Cramer (Institute for Food Chemistry, University of Münster, Germany) for technical assistance during LTQ Orbitrap measurements and access to the instrument. DAV acknowledges research support by the Alfried Krupp von Bohlen und Halbach-Stiftung and DFG (FTICR-MS Facility, INST 256/356-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hayen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baune, M., Qi, Y., Scholz, K. et al. Structural characterization of pyoverdines produced by Pseudomonas putida KT2440 and Pseudomonas taiwanensis VLB120. Biometals 30, 589–597 (2017). https://doi.org/10.1007/s10534-017-0029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-0029-7

Keywords

Navigation