Skip to main content

Advertisement

Log in

Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders?

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The prevalence of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the research to establish novel therapeutic strategies. Iron as the one of most important cation not only play important role in the structure of electron transport chain proteins but also has pivotal duties in cellular activities. But disruption in iron hemostasis can make it toxin to neurons which causes lipid peroxidation, DNA damage and etc. In patients with Alzheimer and Parkinson misbalancing in iron homeostasis accelerate neurodegeneration and cause neuroinflmmation. mTOR as the common signaling pathway between cancer and neurodegenerative disorders controls iron uptake and it is in active form in both diseases. Anti-cancer drugs which target mTOR causes iron deficiency and dual effects of mTOR inhibitors can candidate them as a therapeutic strategy to alleviate neurodegeneration/inflammation because of iron overloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

4EBP1:

4E binding protein1

6-OHDA:

6-hydroxydopamine

Aβ:

Amyloid beta

AD:

Alzheimer’s disease

AICD:

APP intracellular domain

APP:

Amyloid precursor protein

APPsβ:

Ectodomain of APP

Atg7:

5 autophagy related gene 7.5

Atg13:

Autophagy related gene 13

BACE:

Beta secretase

BBB:

Blood brain barrier

βCTF or C99:

APP carboxy-terminal fragment

CNS:

Central nervous system

Depto:

DEP domain–containing mTOR-interacting protein

DMT1:

Divalent metal transporter 1

eIF2α:

Eukaryotic initiation factor 2α

eIF4E:

Eukaryotic initiation factor 4 epsilon

ETC:

Electron transport chain

FPN1:

Ferroportin 1

FRDA:

Friedreich ataxia

HIF-1:

Hypoxia inducible factor 1

IL-1β:

Interleukin 1β

iNOS:

Inducible nitric oxide synthase

IRE:

Iron responsive elements

IRPs:

Iron regulatory proteins

LRRK2:

Leucine-rich repeat kinase 2

MFRN1/2:

Mitoferrins 1/2

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mLSTR8:

Mammalian lethal with sec-18 protein 8

mPTP:

Mitochondrial permeability transition pore

mtDNA:

Mitochondrial DNA

Mtf:

Mitochondrial ferritin

mTOR:

Mammalian target of rapamycin

NFTs:

Neurofibrillary tangles

NM:

Neuromelanin

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

NADPH oxidase

NTBI:

Non-transferrin bound iron

·OH:

Hydroxyl radical

·ONOO:

Peroxynitrite radical

PA:

Phosphatidic acid

PD:

Parkinson’s disease

PKCα:

Protein kinase C alpha

PS1:

Presenilin-1

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphism

SNpc:

Substantia nigra pars compacta

STEAP 1–4:

Six-transmembrane epithelial antigen of prostate 1–4

TfR:

Transferrin receptor

TNFα:

Tumor necrose factor α

ULK1:

Unc like kinase 1

UTR:

Untranslated region

V-ATPase:

Vacuolar H+-ATPase

VDAC:

Voltage dependent anion channels

References

  • Aliev G, Palacios HH, Lipsitt AE, Fischbach K, Lamb BT, Obrenovich ME, Morales L, Gasimov E, Bragin V (2009) Nitric oxide as an initiator of brain lesions during the development of Alzheimer disease. Neurotox Res 16(3):293–305

    Article  CAS  PubMed  Google Scholar 

  • An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, Iqbal IG, Winblad B, Pei JJ (2003) Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. Am J Pathol 163:591–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen HH, Johnsen KB, Moos T (2014) Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 71(9):1607–1622

    Article  CAS  PubMed  Google Scholar 

  • Armengol G, Rojo F, Castellví J, Iglesias C, Cuatrecasas M, Pons B, Baselga J, y Cajal SR (2007) 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res 67(16):7551–7555

    Article  CAS  PubMed  Google Scholar 

  • Arredondo M, Tapia V, Rojas A, Aguirre P, Reyes F, Marzolo MP, Núñez MT (2006) Apical distribution of HFE-beta2-microglobulin is associated with inhibition of apical iron uptake in intestinal epithelia cells. Biometals 19(4):379–388

    Article  CAS  PubMed  Google Scholar 

  • Athan ES, Lee JH, Arriaga A, Mayeux RP, Tycko B (2002) Polymorphisms in the promoter of the human APP gene: functional evaluation and allele frequencies in Alzheimer disease. Arch Neurol 59(11):1793–1799

    Article  PubMed  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93(5):1464–1476

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Huang X, Lahiri DK, Rogers JT (2010) Novel drug targets based on metallobiology of Alzheimer’s disease. Expert Opin Ther Targets 14(11):1177–1197

    Article  CAS  PubMed  Google Scholar 

  • Barcia C, de Pablos V, Bautista-Hernández V, Sánchez-Bahillo A, Bernal I, Fernández-Villalba E, Martín J, Bañón R, Fernández-Barreiro A, Herrero MT (2005) Increased plasma levels of TNF-alpha but not of IL1-beta in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism Relat Disord 11(7):435–439

    Article  PubMed  Google Scholar 

  • Bärlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML, Torhorst J, Haas P, Bucher C, Sauter G, Kallioniemi OP, Kallioniemi A (2000) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92(15):1252–1259

    Article  PubMed  Google Scholar 

  • Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayeva M, Khechaduri A, Puig S, Chang HC, Patial S, Blackshear PJ, Ardehali H (2012) mTOR regulates cellular iron homeostasis through tristetraprolin. Cell Metab 16(5):645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehrer S, Adès L, Galluzzi L, Tajeddine N, Tailler M, Gardin C, de Botton S, Fenaux P, Kroemer G (2008) Erlotinib and gefitinib for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a preclinical comparison. Biochem Pharmacol 76:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172(1–2):151–154

    Article  CAS  PubMed  Google Scholar 

  • Bové J, Martínez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12(8):437–452

    Article  PubMed  CAS  Google Scholar 

  • Breuer W, Hershko C, Cabantchik ZI (2000) The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci 23:185–192

    Article  CAS  PubMed  Google Scholar 

  • Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66(6):1198–1207

    Article  CAS  PubMed  Google Scholar 

  • Caccamo A, Magrì A, Medina DX, Wisely EV, López-Aranda MF, Silva AJ, Oddo S (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12:370–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Chen G, He W, Xiao M, Yan LJ (2015) Activation of mTOR: a culprit of Alzheimer’s disease? Neuropsychiatr Dis Treat 9(11):1015–1030

    Article  CAS  Google Scholar 

  • Cairo G, Recalcati S, Pietrangelo A, Minotti G (2002) The iron regulatory proteins: targets and modulators of free radical reactions and oxidative damage. Free Radic Biol Med 32(12):1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M, Mathews PM, Nixon RA (2004) Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 63(8):821–830

    Article  CAS  PubMed  Google Scholar 

  • Cavadini P, Biasiotto G, Poli M, Levi S, Verardi R, Zanella I, Derosas M, Ingrassia R, Corrado M, Arosio P (2007) RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload. Blood 109(8):3552–3559

    Article  CAS  PubMed  Google Scholar 

  • Chege PM, McColl G (2014) Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson’s disease. Front Aging Neurosci 19(6):89

    Google Scholar 

  • Chen YC, Wu YT, Wei YH (2015) Depletion of mitoferrins leads to mitochondrial dysfunction and impairment of adipogenic differentiation in 3T3-L1 preadipocytes. Free Radic Res 49(11):1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285(41):31217–31232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DH, Cristóvão AC, Guhathakurta S, Lee J, Joh TH, Beal MF, Kim YS (2012) NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease. Antioxid Redox Signal 16(10):1033–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K (2010) Mammalian target of rapamycin: hitting the bull’s-eye for neurological disorders. Oxid Med Cell Longev 3(6):374–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 13(47):e147

    Article  CAS  Google Scholar 

  • Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H, Shaaban AM, Smith L, Speirs V, Verghese ET, McElwaine JN, Hughes TA (2009) Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 100(9):1393–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsi B, Cozzi A, Arosio P, Drysdale J, Santambrogio P, Campanella A, Biasiotto G, Albertini A, Levi S (2002) Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J Biol Chem 277(25):22430–22437

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295

    Article  CAS  PubMed  Google Scholar 

  • Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, Coulthard A, Jackson MJ, Jackson AP, McHale DP, Hay D, Barker WA, Markham AF, Bates D, Curtis A, Burn J (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28(4):350–354

    Article  CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM (1998) Nitric oxide in neurodegeneration. Prog Brain Res 118:215–229

    Article  CAS  PubMed  Google Scholar 

  • De Arriba Zerpa GA, Saleh MC, Fernández PM, Guillou F, de Espinosa los Monteros A, de Vellis J, Zakin MM, Baron B (2000) Alternative splicing prevents transferrin secretion during differentiation of a human oligodendrocyte cell line. J Neurosci Res 61(4):388–395

    Article  PubMed  Google Scholar 

  • De Domenico I, McVey Ward D, Kaplan J (2008) Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 9(1):72–81

    Article  PubMed  CAS  Google Scholar 

  • Devi L, Ohno M (2010) Phospho-eIF2α level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice. PLoS ONE 5(9):e12974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devine MJ, Plun-Favreau H, Wood NW (2011) Parkinson’s disease and cancer: two wars, one front. Nat Rev Cancer 11(11):812–823

    Article  CAS  PubMed  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771):776–781

    Article  CAS  PubMed  Google Scholar 

  • Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1(3):191–200

    Article  CAS  PubMed  Google Scholar 

  • Dyrks T, Weidemann A, Multhaup G, Salbaum JM, Lemaire HG, Kang J, Müller-Hill B, Masters CL, Beyreuther K (1988) Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO J 7(4):949–957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton JW, Qian M (2002) Molecular bases of cellular iron toxicity. Free Radic Biol Med 32(9):833–840

    Article  CAS  PubMed  Google Scholar 

  • Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2 ± mouse model of tuberous sclerosis. Nat Med 14(8):843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenstein RS, Ross KL (2003) Novel roles for iron regulatory proteins in the adaptive response to iron deficiency. J Nutr 133(5 Suppl 1):1510S–1516S

    CAS  PubMed  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86(5):1142–1148

    Article  CAS  PubMed  Google Scholar 

  • Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 16(4):47

    Article  CAS  Google Scholar 

  • Fredenburg AM, Sethi RK, Allen DD, Yokel RA (1996) The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1′ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology 108(3):191–199

    Article  CAS  PubMed  Google Scholar 

  • Frederick C, Ando K, Leroy K, Héraud C, Suain V, Buée L, Brion JP (2014) Rapamycin ester analog CCI-779/temsirolimus alleviates tau pathology and improves motor deficit in mutant tau Transgenic mice. J Alzheimers Dis 44:1145–1156

    Google Scholar 

  • Fretham SJ, Carlson ES, Georgieff MK (2011) The role of iron in learning and memory. Adv Nutr 2(2):112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16(18):1865–1870

    Article  CAS  PubMed  Google Scholar 

  • Friedlich AL, Tanzi RE, Rogers JT (2007) The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 12(3):222–223

    Article  CAS  PubMed  Google Scholar 

  • Galvez T, Teruel MN, Heo WD, Jones JT, Kim ML, Liou J, Myers JW, Meyer T (2007) siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake. Genome Biol 8(7):R142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao G, Chang YZ (2014) Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol 17(5):19

    Google Scholar 

  • Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12(4):502–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogvadze V, Walter PB, Ames BN (2003) The role of Fe2 + -induced lipid peroxidation in the initiation of the mitochondrial permeability transition. Arch Biochem Biophys 414(2):255–260

    Article  CAS  PubMed  Google Scholar 

  • Graber TE, McCamphill PK, Sossin WS (2013) A recollection of mTOR signaling in learning and memory. Learn Mem 20:518–530

    Article  CAS  PubMed  Google Scholar 

  • Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J (2013) Autophagy in stem cells. Autophagy 9(6):830–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5):a006270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366(1–2):79–94

    Article  CAS  PubMed  Google Scholar 

  • Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 18(5):34

    Google Scholar 

  • Hentze MW, Kühn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93(16):8175–8182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu M, Ninomiya H, Inamura K, Nomura K, Takeuchi K, Satoh Y, Okumura S, Nakagawa K, Yamori T, Matsuura M, Morikawa T, Ishikawa Y (2010) Activation status of receptor tyrosine kinase downstream pathways in primary lung adenocarcinoma with reference of KRAS and EGFR mutations. Lung Cancer 70(1):94–102

    Article  PubMed  Google Scholar 

  • Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27(18):2432–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZG, Lebowitz MS, Ghanbari HA (2006) Neuroprotective activity of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (PAN-811), a cancer therapeutic agent. CNS Drug Rev 12(1):77–90

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Yu JT, Zhu XC, Tan MS, Wang HF, Cao L, Zhang QQ, Shi JQ, Gao L, Qin H, Zhang YD, Tan L (2014) Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res 81:54–63

    Article  CAS  PubMed  Google Scholar 

  • Jodeiri Farshbaf M, Ghaedi K, Megraw TL, Curtiss J, Shirani Faradonbeh M, Vaziri P, Nasr-Esfahani MH (2016a) Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders? Neuromol Med 18(1):1–15

    Article  CAS  Google Scholar 

  • Jodeiri Farshbaf M, Forouzanfar M, Ghaedi K, Kiani-Esfahani A, Peymani M, Shoaraye Nejati A, Izadi T, Karbalaie K, Noorbakhshnia M, Rahgozar S, Baharvand H, Nasr-Esfahani MH (2016b) Nurr1 and PPARγ protect PC12 cells against MPP(+) toxicity: involvement of selective genes, anti-inflammatory, ROS generation, and antimitochondrial impairment. Mol Cell Biochem 420(1–2):29–42

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 10(11):1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Klus P, Cirillo D, Botta Orfila T, Gaetano Tartaglia G (2015) Neurodegeneration and cancer: where the disorder prevails. Sci Rep 5:15390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104(36):14489–14494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari U, Tan EK (2009) LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. FEBS J 276:6455–6463

    Article  CAS  PubMed  Google Scholar 

  • Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R, Pradier L, Hugon J (2005) mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer’s disease. J Neurochem 94:215–225

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawen A, Lane DJR (2013) Mammalian iron homeostasis in health and disease: uptake, storage, transport, andmolecular mechanisms of action. Antioxid Redox Signal 18(18):2473–2507

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276(27):24437–24440

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang S, Zhang X, Li T, Tang Y, Liu H, Yang W, Le W (2013) Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 10(4):433–441

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Li X, Liu SF, Qu WS, Wang W, Tian DS (2015) Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen-glucose deprivation and reoxygenation. Neurochem Int 83–84:9–18

    Article  PubMed  CAS  Google Scholar 

  • Liddell JR, Obando D, Liu J, Ganio G, Volitakis I, Mok SS, Crouch PJ, White AR, Codd R (2013) Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radic Biol Med 60:147–156

    Article  CAS  PubMed  Google Scholar 

  • Lil R (2009) Function and biogenesis of iron–Sulphur proteins. Nature 460(7257):831–838

    Article  CAS  Google Scholar 

  • Liu Y, Su Y, Wang J, Sun S, Wang T, Qiao X, Run X, Li H, Liang Z (2013) Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase. Neurochem Int 62(4):458–467

    Article  CAS  PubMed  Google Scholar 

  • Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, Strong R, Richardson A, Oddo S (2012) Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling. Aging Cell 11(2):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello-Filho AC, Meneghini R (1991) Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutat Res 251(1):109–113

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Article  CAS  PubMed  Google Scholar 

  • Mikhael M, Kim SF, Schranzhofer M, Soe-Lin S, Sheftel AD, Mullner EW, Ponka P (2006) Iron regulatory protein-independent regulation of ferritin synthesis by nitrogen monoxide. FEBS J 273(16):3828–3836

    Article  CAS  PubMed  Google Scholar 

  • Moos T, Morgan EH (2004) The metabolism of neuronal iron and its pathogenic role in neurological disease. Ann N Y Acad Sci 1012:14–26

    Article  CAS  PubMed  Google Scholar 

  • Morris CM, Candy JM, Omar S, Bloxham CA, Edwardson JA (1994) Transferrin receptors in the parkinsonian midbrain. Neuropathol Appl Neurobiol 20(5):468–472

    Article  CAS  PubMed  Google Scholar 

  • Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • Muhoberac BB, Vidal R (2013) Abnormal iron homeostasis and neurodegeneration. Front Aging Neurosci 30(5):32

    Google Scholar 

  • Nie G, Sheftel AD, Kim SF, Ponka P (2005) Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood 105(5):2161–2167

    Article  CAS  PubMed  Google Scholar 

  • Noda NN, Inagaki F (2015) Mechanisms of Autophagy. Annu Rev Biophys 44:101–122

    Article  CAS  PubMed  Google Scholar 

  • Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20(23):RC111

    CAS  PubMed  Google Scholar 

  • Noh WC, Kim YH, Kim MS, Koh JS, Kim HA, Moon NM, Paik NS (2008) Activation of the mTOR signaling pathway in breast cancer and its correlation with the clinicopathologic variables. Breast Cancer Res Treat 110(3):477–483

    Article  CAS  PubMed  Google Scholar 

  • Oddo S (2012) The role of mTOR signaling in Alzheimer disease. Front Biosci 4:941–952

    Article  Google Scholar 

  • Oh S, Shin PK, Chung J (2015) Effects of developmental iron deficiency and post-weaning iron repletion on the levels of iron transporter proteins in rats. Nutr Res Pract 9(6):913–918

    Article  Google Scholar 

  • Ohyashiki JH, Kobayashi C, Hamamura R, Okabe S, Tauchi T, Ohyashiki K (2009) The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci 100(5):970–977

    Article  CAS  PubMed  Google Scholar 

  • Oshiro S, Nakamura Y, Ishige R, Hori M, Nakajima H, Gahl WA (1994) Reduction site of transferrin-dependent and transferrin-independent iron in cultured human fibroblasts”. J Biochem 115(5):849–852

    Article  CAS  PubMed  Google Scholar 

  • Oshiro S, Kawahara M, Mika S, Muramoto K, Kobayashi K, Ishige R, Nozawa K, Hori M, Yung C, Kitajima S, Kuroda Y (1998) Aluminum taken up by transferrin-independent iron uptake affects the iron metabolism in rat cortical cells. J Biochem 123(1):42–46

    Article  CAS  PubMed  Google Scholar 

  • Oshiro S, Morioka MS, Kikuchi M (2011) Dysregulation of iron metabolism in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Adv Pharmacol Sci. doi:10.1155/2011/378278

    PubMed  PubMed Central  Google Scholar 

  • Paccalin M, Pain-Barc S, Pluchon C, Paul C, Besson MN, Carret-Rebillat AS, Rioux-Bilan A, Gil R, Hugon J (2006) Activated mTOR and PKR kinases in lymphocytes correlate with memory and cognitive decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 22(4):320–326

    Article  CAS  PubMed  Google Scholar 

  • Pandolfo M (2006) Iron and friedreich ataxia. J Neural Transm Suppl 70:143–146

    Article  CAS  Google Scholar 

  • Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, O’Toole T, Gibbons J, Belldegrun AS, Figlin RA (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109(11):2257–2267

    Article  CAS  PubMed  Google Scholar 

  • Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (2009) Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 29(4):1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, Younkin L, Younkin S, Carlson G, McEwen BS, Iadecola C (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105(4):1347–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K (2003) Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer’s disease. Am J Pathol 163(3):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei JJ, Sjögren M, Winblad B (2008) Neurofibrillary degeneration in Alzheimer’s disease: from molecular mechanisms to identification of drug targets. Curr Opin Psychiatry 21(6):555–561

    Article  PubMed  Google Scholar 

  • Pierce A, Podlutskaya N, Halloran JJ, Hussong SA, Lin PY, Burbank R, Hart MJ, Galvan V (2013) Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer’s-like deficits in mice modeling the disease. J Neurochem 124(6):880–893

    Article  CAS  PubMed  Google Scholar 

  • Plun-Favreau H, Lewis PA, Hardy J, Martins LM, Wood NW (2010) Cancer and neurodegeneration: between the devil and the deep blue sea. PLoS Genet 6(12):e1001257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pópulo H, Soares P, Faustino A, Rocha AS, Silva P, Azevedo F, Lopes JM (2011) mTOR pathway activation in cutaneous melanoma is associated with poorer prognosis characteristics. Pigment Cell Melanoma Res. 24(1):254–257

    Article  PubMed  CAS  Google Scholar 

  • Porter J, Galanello R, Saglio G, Neufeld EJ, Vichinsky E, Cappellini MD, Olivieri N, Piga A, Cunningham MJ, Soulières D, Gattermann N, Tchernia G, Maertens J, Giardina P, Kwiatkowski J, Quarta G, Jeng M, Forni GL, Stadler M, Cario H, Debusscher L, Della Porta M, Cazzola M, Greenberg P, Alimena G, Rabault B, Gathmann I, Ford JM, Alberti D, Rose C (2008) Relative response of patients with myelodysplastic syndromes and other transfusion-dependent anaemias to deferasirox (ICL670): a 1-year prospective study. Eur J Haematol 80(2):168–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Przedborski S, Vila M, Jackson-Lewis V (2003) Neurodegeneration: what is it and where are we? J Clin Investig 111:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK (2003) Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr 133(10):3215–3221

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15(7):1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Remarque EJ, Bollen EL, Weverling-Rijnsburger AW, Laterveer JC, Blauw GJ, Westendorp RG (2001) Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Exp Gerontol 36(1):171–176

    Article  CAS  PubMed  Google Scholar 

  • Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron–sulphur protein deficiency in Friedreich ataxia. Nat Genet 17(2):215–217

    Article  CAS  PubMed  Google Scholar 

  • Rouault TA, Tong WH (2008) Iron–sulfur cluster biogenesis and human disease. Trends Genet 24(8):398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  • Santambrogio P, Biasiotto G, Sanvito F, Olivieri S, Arosio P, Levi S (2007) Mitochondrial ferritin expression in adult mouse tissues. J Histochem Cytochem 55(11):1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Schmucker S, Puccio H (2010) Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet 19(R1):R103–R110

    Article  CAS  PubMed  Google Scholar 

  • Seo AY, Xu J, Servais S, Hofer T, Marzetti E, Wohlgemuth SE, Knutson MD, Chung HY, Leeuwenburgh C (2008) Mitochondrial iron accumulation with age and functional consequences. Aging Cell 7(5):706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shastri A, Bonifati DM, Kishore U (2013) Innate immunity and neuroinflammation. Mediators Inflamm 2013:342931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheftel AD, Zhang AS, Brown C, Shirihai OS, Ponka P (2007) Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Shen HM, Mizushima N (2014) At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 39(2):61–71

    Article  CAS  PubMed  Google Scholar 

  • Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ, Griffin WS (1996) In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 17(5):761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760

    Article  CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Mizrachi D (2012) VDAC1: from structure to cancer therapy. Front Oncol 29(2):164

    Google Scholar 

  • Sochaski MA, Bartfay WJ, Thorpe SR, Baynes JW, Bartfay E, Lehotay DC, Liu PP (2002) Lipid peroxidation and protein modification in a mouse model of chronic iron overload. Metabolism 51(5):645–651

    Article  CAS  PubMed  Google Scholar 

  • Soriano S, Lu DC, Chandra S, Pietrzik CU, Koo EH (2001) The amyloidogenic pathway of amyloid precursor protein (APP) is independent of its cleavage by caspases. J Biol Chem 276(31):29045–29050

    Article  CAS  PubMed  Google Scholar 

  • Steffens GC, Biewald R, Buse G (1987) Cytochrome c oxidase is a three-copper, two-heme-A protein. Eur J Biochem 164(2):295–300

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L (2008) Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 106(1):24–36

    Article  CAS  PubMed  Google Scholar 

  • Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G (1999) Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 274(34):24142–24146

    Article  CAS  PubMed  Google Scholar 

  • Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12(9):1129–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA 99:467–472

    Article  CAS  PubMed  Google Scholar 

  • Theil EC (2004) Iron, ferritin, and nutrition. Annu Rev Nutr 24:327–343

    Article  CAS  PubMed  Google Scholar 

  • Thelander L, Gräslund A (1983) Mechanism of inhibition of mammalian ribonucleotide reductase by the iron chelate of 1-formylisoquinoline thiosemicarbazone. destruction of the tyrosine free radical of the enzyme in an oxygen-requiring reaction. J Biol Chem 258(7):4063–4066

    CAS  PubMed  Google Scholar 

  • Tribl F, Asan E, Arzberger T, Tatschner T, Langenfeld E, Meyer HE, Bringmann G, Riederer P, Gerlach M, Marcus K (2009) Identification of L-ferritin in neuromelanin granules of the human substantia nigra: a targeted proteomics approach. Mol Cell Proteomics 8(8):1832–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troca-Marin JA, Alves-Sampaio A, Montesinos ML (2012) Deregulated mTOR-mediated translation in intellectual disability. Prog Neurobiol 96:268–282

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2003) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21(2):211–234

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21:362–369

    Article  CAS  Google Scholar 

  • Wang L, Lawrence JC Jr, Sturgill TW, Harris TE (2009) Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J Biol Chem 284(22):14693–14697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yang H, Zhao S, Sato H, Konishi Y, Beach TG, Abdelalim EM, Bisem NJ, Tooyama I (2011) Expression and localization of mitochondrial ferritin mRNA in Alzheimer’s disease cerebral cortex. PLoS ONE 6(7):e22325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White AR, Kanninen KM, Crouch PJ (2015) Editorial: metals and neurodegeneration: restoring the balance. Front Aging Neurosci 2(7):127

    Google Scholar 

  • Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101

    Article  CAS  PubMed  Google Scholar 

  • Wingert RA, Galloway JL, Barut B, Foott H, Fraenkel P, Axe JL, Weber GJ, Dooley K, Davidson AJ, Schmid B, Paw BH, Shaw GC, Kingsley P, Palis J, Schubert H, Chen O, Kaplan J, Zon LI (2005) Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature 436(7053):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thevenod F (2014a) Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 28(5):2134–2145

    Article  CAS  PubMed  Google Scholar 

  • Wolff NA, Garrick LM, Zhao L, Garrick MD, Thévenod F (2014b) Mitochondria represent another locale for the divalent metal transporter 1 (DMT1). Channels (Austin) 8(5):458–466

    Article  Google Scholar 

  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100(10):6145–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu WS, Zhao YS, Shi ZH, Chang SY, Nie GJ, Duan XL, Zhao SM, Wu Q, Yang ZL, Zhao BL, Chang YZ (2013) Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxid Redox Signal 18(2):158–169

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Yang M, Guan H, Liu Z, Zhao S, Takeuchi S, Yanagisawa D, Tooyama I (2013) Mitochondrial ferritin in neurodegenerative diseases. Neurosci Res 77(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, Faust R, Qian SY, Miller DS, Chignell CF, Wilson B, Jackson-Lewis V, Przedborski S, Joset D, Loike J, Hong JS, Sulzer D, Zecca L (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Zhou XW, Tanila H, Pei JJ (2008) Parallel increase in p70 kinase activation and tau phosphorylation (S262) with Abeta overproduction. FEBS Lett 582:159–164

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Huang Y, Li J, Wang Z (2010) The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 27(2):255–261

    Article  CAS  PubMed  Google Scholar 

  • Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H2O2 release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. J Biol Chem 280(16):15587–15594

    Article  CAS  PubMed  Google Scholar 

  • Zucca FA, Bellei C, Giannelli S, Terreni MR, Gallorini M, Rizzio E, Pezzoli G, Albertini A, Zecca L (2006) Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability. J Neural Transm (Vienna) 113(6):757–767

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jodeiri Farshbaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodeiri Farshbaf, M., Ghaedi, K. Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders?. Biometals 30, 1–16 (2017). https://doi.org/10.1007/s10534-016-9981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9981-x

Keywords

Navigation