, Volume 29, Issue 5, pp 841–849 | Cite as

In vivo effect of copper status on cisplatin-induced nephrotoxicity

  • Ludmila V. Puchkova
  • Alexey N. Skvortsov
  • Paolo Rusconi
  • Ekaterina Yu. Ilyechova
  • Massimo Broggini


Cisplatin is a widely used antitumor agent; however, tumor resistance and severe side effects limit its use. It is well accepted that cisplatin toxicity can be modulated in vitro in cell cultures by copper salts. In the present work, mice with different blood serum copper status were treated with a single intraperitoneal cisplatin injection at a dose of 5 mg/kg, monitored for 3 days in metabolic cages and analyzed for renal function. Both copper-deficient and copper-overloaded mice displayed more severe early proteinuria and retarded platinum excretion than control mice. The effects of copper status on cisplatin-induced nephrotoxicity are discussed.


Cisplatin Nephrotoxicity Murine model of copper status 



The work was supported by a CARIPLO Foundation fellowship grant (to LP) and support from the Russian Foundation for Basic Research (15-04-06770a to LP, 16-34-60219 to EI). We also gratefully acknowledge the generous contribution of the Italian Association for Cancer Research (AIRC; to MB).

Supplementary material

10534_2016_9955_MOESM1_ESM.doc (888 kb)
Supplementary material 1 (DOC 888 kb)


  1. Abada P, Howell SB (2010) Regulation of cisplatin cytotoxicity by Cu influx transporters. Met Based Drugs 2010:317581CrossRefPubMedGoogle Scholar
  2. Arredondo M, Mendiburo MJ, Flores S, Singleton ST, Garrick MD (2014) Mouse divalent metal transporter 1 is a copper transporter in HEK293 cells. Biometals 27:115–123CrossRefPubMedGoogle Scholar
  3. Babich PS, Skvortsov AN, Rusconi P, Tsymbalenko NV, Mutanen M et al (2013) Non-hepatic tumors change the activity of genes encoding copper trafficking proteins in the liver. Cancer Biol Ther 14:614–624CrossRefPubMedPubMedCentralGoogle Scholar
  4. Basinger MA, Jones MM, Gilbreath SG 4th, Walker EM Jr, Fody EP et al (1989) Dithiocarbamate-induced biliary platinum excretion and the control of cis-platinum nephrotoxicity. Toxicol Appl Pharmacol 97:279–288CrossRefPubMedGoogle Scholar
  5. Chen HH, Kuo MT (2013) Overcoming platinum drug resistance with copper-lowering agents. Anticancer Res 33:4157–4161PubMedPubMedCentralGoogle Scholar
  6. Chen SJ, Kuo CC, Pan HY, Tsou TC, Yeh SC et al (2015) Mechanistic basis of a combination d-penicillamine and platinum drugs synergistically inhibits tumor growth in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Biochem Pharmacol 95:28–37CrossRefPubMedGoogle Scholar
  7. Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61:223–242CrossRefPubMedGoogle Scholar
  8. Ciarimboli G (2011) Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol 7:159–174CrossRefPubMedGoogle Scholar
  9. Ding D, He J, Allman BL, Yu D, Jiang H et al (2011) Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res 282:196–203CrossRefPubMedPubMedCentralGoogle Scholar
  10. Du X, Wang X, Li H, Sun H (2012) Comparison between copper and cisplatin transport mediated by human copper transporter 1 (hCTR1). Metallomics 4:679–685CrossRefPubMedGoogle Scholar
  11. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ginos JZ, Cooper AJ, Dhawan V, Lai JC, Strother SC et al (1987) [13N]Cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumor. J Nucl Med 28:1844–1851PubMedGoogle Scholar
  13. Groos E, Walker L, Masters JR (1986) Intravesical chemotherapy. Studies on the relationship between pH and cytotoxicity. Cancer 58:1199–1203CrossRefPubMedGoogle Scholar
  14. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142CrossRefPubMedPubMedCentralGoogle Scholar
  15. Haas KL, Putterman AB, White DR, Thiele DJ, Franz KJ (2011) Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1. J Am Chem Soc 133:4427–4437CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hahn M, Kleine M, Sheldrick WS (2001) Interaction of cisplatin with methionine and histidine-containing peptides: competition between backbone binding, macrochelation and peptide cleavage. J Biol Inorg Chem 6:556–566CrossRefPubMedGoogle Scholar
  17. Holzer AK, Manorek GH, Howell SB (2006) Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol 70:1390–1394CrossRefPubMedGoogle Scholar
  18. Ilyechova E, Skvortsov A, Zatulovsky E, Tsymbalenko N, Shavlovsky M et al (2011) Experimental switching of copper status in laboratory rodents. J Trace Elem Med Biol 25:27–35CrossRefPubMedGoogle Scholar
  19. Ilyechova EY, Saveliev AN, Skvortsov AN, Babich PS, Zatulovskaia AY et al (2014) The effects of silver ions on copper metabolism in rats. Metallomics 6:1970–1987CrossRefPubMedGoogle Scholar
  20. Ip V, Liu JJ, McKeage MJ (2013) Evaluation of effects of copper histidine on copper transporter 1-mediated accumulation of platinum and oxaliplatin-induced neurotoxicity in vitro and in vivo. Clin Exp Pharmacol Physiol 40:371–378CrossRefPubMedGoogle Scholar
  21. Ishida S, McCormick F, Smith-McCune K, Hanahan D (2010) Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17:574–583CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ivy KD, Kaplan JH (2013) A re-evaluation of the role of hCTR1, the human high-affinity copper transporter, in platinum-drug entry into human cells. Mol Pharmacol 83:1237–1246CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kuo MT, Fu S, Savaraj N, Chen HH (2012) Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy. Cancer Res 72:4616–4621CrossRefPubMedPubMedCentralGoogle Scholar
  24. Larson CA, Blair BG, Safaei R, Howell SB (2009) The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs. Mol Pharmacol 75:324–330CrossRefPubMedGoogle Scholar
  25. Larson CA, Adams PL, Jandial DD, Blair BG, Safaei R et al (2010) The role of the N-terminus of mammalian copper transporter 1 in the cellular accumulation of cisplatin. Biochem Pharmacol 80:448–454CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liang ZD, Long Y, Tsai WB, Fu S, Kurzrock R et al (2012) Mechanistic basis for overcoming platinum resistance using copper chelating agents. Mol Cancer Ther 11:2483–2494CrossRefPubMedPubMedCentralGoogle Scholar
  27. More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR et al (2010) Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci 30:9500–9509CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nose Y, Kim BE, Thiele DJ (2006) Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab 4:235–244CrossRefPubMedGoogle Scholar
  29. Öhrvik H, Thiele DJ (2014) How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann N Y Acad Sci 1314:32–41CrossRefPubMedPubMedCentralGoogle Scholar
  30. Owen JA, Smith H (1961) Detection of ceruloplasmin after zone electrophoresis. Clin Chim Acta 6:441–444CrossRefGoogle Scholar
  31. Pabla N, Murphy RF, Liu K, Dong Z (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 296:F505–F511CrossRefPubMedPubMedCentralGoogle Scholar
  32. Palm-Espling ME, Andersson CD, Björn E, Linusson A, Wittung-Stafshede P (2013) Determinants for simultaneous binding of copper and platinum to human chaperone Atox1: hitchhiking not hijacking. PLoS One 8:e70473CrossRefPubMedPubMedCentralGoogle Scholar
  33. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  34. Przybyłkowski A, Gromadzka G, Wawer A, Grygorowicz T, Cybulska A et al (2013) Intestinal expression of metal transporters in Wilson’s disease. Biometals 26:925–934CrossRefPubMedPubMedCentralGoogle Scholar
  35. Puig S, Lee J, Lau M, Thiele DJ (2002) Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277:26021–26030CrossRefPubMedGoogle Scholar
  36. Reznik LV, Myazina EM, Shakchmatova EI, Gambaryan SP, Brovtsyn VK et al (1991) The prevention of cisplatin-induced renal dysfunction by hydroxyl-containing dithiocarbamates. Br J Cancer 63:234–236CrossRefPubMedPubMedCentralGoogle Scholar
  37. Safi R, Nelson ER, Chitneni SK, Franz KJ, George DJ et al (2014) Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res 74:5819–5831CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schierl R, Rohrer B, Hohnloser J (1995) Long-term platinum excretion in patients treated with cisplatin. Cancer Chemother Pharmacol 36:75–78CrossRefPubMedGoogle Scholar
  39. Song IS, Savaraj N, Siddik ZH, Liu P, Wei Y et al (2004) Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther 3:1543–1549PubMedGoogle Scholar
  40. Sze CM, Khairallah GN, Xiao Z, Donnelly PS, O’Hair RA et al (2009) Interaction of cisplatin and analogues with a Met-rich protein site. J Biol Inorg Chem 14:163–165CrossRefPubMedGoogle Scholar
  41. Wang X, Jiang P, Wang P, Yang CS, Wang X et al (2015) EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PLoS One 10:e0125402CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124CrossRefPubMedGoogle Scholar
  43. Zager RA, Johnson AC, Hanson SY, Lund S (2006) Acute nephrotoxic and obstructive injury primes the kidney to endotoxin-driven cytokine/chemokine production. Kidney Int 69:1181–1188CrossRefPubMedGoogle Scholar
  44. Zatulovskiy EA, Skvortsov AN, Rusconi P, Ilyechova EY, Babich PS et al (2012) Serum depletion of holo-ceruloplasmin induced by silver ions in vivo reduces uptake of cisplatin. J Inorg Biochem 116:88–96CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ludmila V. Puchkova
    • 2
    • 3
    • 4
  • Alexey N. Skvortsov
    • 4
  • Paolo Rusconi
    • 1
  • Ekaterina Yu. Ilyechova
    • 2
    • 3
  • Massimo Broggini
    • 1
    • 2
  1. 1.Laboratory of Molecular PharmacologyIRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”MilanItaly
  2. 2.Laboratory of Trace Elements MetabolismITMO UniversitySt. PetersburgRussia
  3. 3.Department of Molecular GeneticsInstitute of Experimental MedicineSt. PetersburgRussia
  4. 4.Biophysics Department, Institute of Physics, Nanotechnology and TelecommunicationsPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations