Abstract
AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)–SH heme complex was quickly converted into Fe(II) and Fe(II)–O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)–SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)–OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity.
This is a preview of subscription content, access via your institution.






Abbreviations
- AfGcHK:
-
A globin-coupled oxygen sensor histidine kinase from Anaeromyxobacter sp. Fw109-5
- EcDOS:
-
Escherichia coli direct oxygen sensor or heme-regulated phosphodiesterase from E. coli or EcDosP
- Fe(III):
-
Fe(III)–protoporphyrin IX complex, or hemin
- Fe(II):
-
Fe(II)–protoporphyrin IX complex
- GCS:
-
Globin-coupled oxygen sensor
- MALDI-MS:
-
Matrix-assisted laser desorption/ionization mass spectrometry
- MALDI-FT-ICR:
-
Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance
- PAS:
-
An acronym derived from the words Per (Drosophila period clock protein)-Arnt (vertebrate aryl hydrocarbon receptor nuclear translocator)-Sim (Drosophila single-minded protein)
- YddV:
-
A globin-coupled diguanylate cyclase from E. coli or EcDosC
- YddV-heme:
-
A sensor (globin) domain containing heme of YddV
- WT:
-
Wild type
References
Andersson LA, Loehr TM, Lim AR, Mauk AG (1984) Sulfmyoglobin. Resonance Raman spectroscopic evidence for an iron-chlorin prosthetic group. J Biol Chem 259:15340–15349
Banerjee R (2011) Hydrogen sulfide: redox metabolism and signaling. Antioxid Redox Signal 15:339–341. doi:10.1089/ars.2011.3912
Berzofsky JA, Peisach J, Blumberg WE (1971) Sulfheme proteins. I. Optical and magnetic properties of sulfmyoglobin and its derivatives. J Biol Chem 246:3367–3377
Bostelaar T, Vitvitsky V, Kumutima J, Lewis BE, Yadav PK, Brunold TC, Filipovic M, Lehnert N, Stemmler TL, Banerjee R (2016) Hydrogen sulfide oxidation by myoglobin. J Am Chem Soc. doi:10.1021/jacs.6b03456
Du Y, Liu G, Yan Y, Huang D, Luo W, Martinkova M, Man P, Shimizu T (2013) Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS). Biometals 26:839–852. doi:10.1007/s10534-013-9640-4
Fojtikova V, Stranava M, Vos MH, Liebl U, Hranicek J, Kitanishi K, Shimizu T, Martinkova M (2015) Kinetic analysis of a globin-coupled histidine kinase, AfGcHK: effects of the heme iron complex, response regulator, and metal cations on autophosphorylation activity. Biochemistry 54:5017–5029. doi:10.1021/acs.biochem.5b00517
Germani F, Moens L, Dewilde S (2013) Haem-based sensors: a still growing old superfamily. Adv Microb Physiol 63:1–47. doi:10.1016/B978-0-12-407693-8.00001-7
Gilles-Gonzalez M-A, Gonzalez G (2005) Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem 99:1–22. doi:10.1016/j.jinorgbio.2004.11.006
Girvan HM, Munro AW (2013) Heme sensor proteins. J Biol Chem 288:13194–13203. doi:10.1074/jbc.R112.422642
Green J, Crack JC, Thomson AJ, LeBrun NE (2009) Bacterial sensors of oxygen. Curr Opin Microbiol 12:145–151. doi:10.1016/j.mib.2009.01.008
Hirata S, Matsui T, Sasakura Y, Sugiyama S, Yoshimura T, Sagami I, Shimizu T (2003) Characterization of Met95 mutants of a heme-regulated phosphodiesterase from Escherichia coli. Optical absorption, magnetic circular dichroism, circular dichroism, and redox potentials. Eur J Biochem 270:4771–4779. doi:10.1046/j.1432-1033.2003.03879.x
Igarashi J, Kitanishi K, Shimizu T (2011) Emerging role of heme as a signal and the gas-sensing site: heme-sensing and gas-sensing. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 15. World Scientific Publishing, Hackensack (Chapter 73)
Kimura H (2015) Signaling molecules: hydrogen sulfide and polysulfide. Antioxid Redox Signal 22:362–376. doi:10.1089/ars.2014.5869
Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y, Kimura H (2015) Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774. doi:10.1038/srep14774
Kitanishi K, Kobayashi K, Kawamura Y, Ishigami I, Ogura T, Nakajima K, Igarashi J, Tanaka A, Shimizu T (2010) Important roles of Tyr43 at the putative heme distal side in the oxygen recognition and stability of the Fe(II)–O2 complex of YddV, a globin-coupled heme-based oxygen sensor diguanylate cyclase. Biochemistry 49:10381–10393. doi:10.1021/bi100733q
Kitanishi K, Kobayashi K, Uchida T, Ishimori K, Igarashi J, Shimizu T (2011) Identification and functional and spectral characterization of a globin-coupled histidine kinase from Anaeromyxobacter sp. Fw109-5. J Biol Chem 286:35522–35534. doi:10.1074/jbc.M111.274811
Lambry J-C, Stranava M, Lobato L, Martinkova M, Shimizu T, Liebl U, Vos MH (2016) Ultrafast spectroscopy evidence for picosecond ligand exchange at the binding site of a heme protein: heme-based sensor YddV. J Phys Chem Lett 7:69–74. doi:10.1021/acs.jpclett.5b02517
Martínková M, Kitanishi K, Shimizu T (2013) Heme-based globin-coupled oxygen sensors: linking oxygen binding to functional regulation of diguanylate cyclase, histidine kinase, and methyl-accepting chemotaxis. J Biol Chem 288:27702–27711. doi:10.1074/jbc.R113.473249
Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464. doi:10.1038/nchembio.1834
Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454. doi:10.1038/nrmicro1892
Nakajima K, Kitanishi K, Kobayashi K, Kobayashi N, Igarashi J, Shimizu T (2012) Leu65 in the heme distal side is critical for the stability of the Fe(II)–O2 complex of YddV, a globin-coupled oxygen sensor diguanylate cyclase. J Inorg Biochem 108:163–170. doi:10.1016/j.jinorgbio.2011.09.019
Nicoletti FP, Comandini A, Bonamore A, Boechi L, Boubeta FM, Feis A, Smulevich G, Boffi A (2010) Sulfide binding properties of truncated hemoglobins. Biochemistry 49:2269–2278. doi:10.1021/bi901671d
Paul BD, Snyder SH (2015) H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci 40:687–700. doi:10.1016/j.tibs.2015.08.007
Pietri R, Román-Morales E, López-Garriga J (2011) Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 15:393–404. doi:10.1089/ars.2010.3698
Poulos TL (2014) Heme enzyme structure and function. Chem Rev 114:3919–3962. doi:10.1021/cr400415k
Ramos-Alvarez C, Yoo B-K, Pietri R, Lamarre I, Martin J-L, Lopez-Garriga J, Negrerie M (2013) Reactivity and dynamics of H2S, NO, and O2 interacting with hemoglobins from Lucina pectinata. Biochemistry 52:7007–7021. doi:10.1021/bi400745a
Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI (2013) Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA 110:13582–13587. doi:10.1073/pnas.1312524110
Ríos-González BB, Román-Morales EM, Pietri R, López-Garriga J (2014) Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J Inorg Biochem 133:78–86. doi:10.1016/j.jinorgbio.2014.01.013
Sakamoto H, Omata Y, Adachi Y, Palmer G, Noguchi M (2000) Separation and identification of the regioisomers of verdoheme by reversed-phase ion-pair high-performance liquid chromatography, and characterization of their complexes with heme oxygenase. J Inorg Biochem 82:113–121
Shimizu T (2013) Revisit of the interactions between hydrogen sulfide and heme proteins. Curr Chem Biol 7:207–212
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M (2015) Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 115:6491–6533. doi:10.1021/acs.chemrev.5b00018
Stranava M, Martínková M, Stiborová M, Man P, Kitanishi K, Muchová L, Vítek L, Martínek V, Shimizu T (2014) Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction. J Inorg Biochem 140:29–38. doi:10.1016/j.jinorgbio.2014.06.010
Takahashi H, Sekimoto M, Tanaka M, Tanaka A, Igarashi J, Shimizu T (2012) Hydrogen sulfide stimulates the catalytic activity of a heme-regulated phosphodiesterase from Escherichia coli (Ec DOS). J Inorg Biochem 109:66–71. doi:10.1016/j.jinorgbio.2012.01.001
Tarnawski M, Barends TRM, Schlichting I (2015) Structural analysis of an oxygen-regulated diguanylate cyclase. Acta Crystallogr D Biol Crystallogr 71:2158–2177. doi:10.1107/S139900471501545X
Tuckerman JR, Gonzalez G, Sousa EHS, Wan X, Saito JA, Alam M, Gilles-Gonzalez M-A (2009) An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48:9764–9774. doi:10.1021/bi901409g
Uchida T, Kitagawa T (2005) Mechanism for transduction of the ligand-binding signal in heme-based gas sensory proteins revealed by resonance Raman spectroscopy. Acc Chem Res 38:662–670. doi:10.1021/ar030267d
Voet D, Voet J (2011) Hemoglobin: Protein function in microcosm. Biochemistry, 4th edn. Wiley, New York, pp 323–358
Washio J, Sato T, Koseki T, Takahashi N (2005) Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. J Med Microbiol 54:889–895. doi:10.1099/jmm.0.46118-0
Yan F, Fojtikova V, Man P, Stranava M, Martínková M, Du Y, Huang D, Shimizu T (2015) Catalytic enhancement of the heme-based oxygen-sensing phosphodiesterase EcDOS by hydrogen sulfide is caused by changes in heme coordination structure. Biometals 28:637–652. doi:10.1007/s10534-015-9847-7
Zhang W, Phillips GN (2003) Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry. Structure 11:1097–1110. doi:10.1016/S0969-2126(03)00169-2
Acknowledgments
This work was supported in part by Charles University in Prague (UNCE 204025/2012), the Grant Agency of Charles University in Prague (362115) and the Grant Agency of the Czech Republic (Grant 15-19883S). The mass spectrometry facility used in this work was supported by the EU project CZ.1.05/1.1.00/02.0109. We are grateful to Dr. Kenichi Kitanishi for valuable discussion during the early stages of this project.
Author information
Authors and Affiliations
Corresponding author
Additional information
Veronika Fojtikova and Martina Bartosova contributed equally to this work.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Fojtikova, V., Bartosova, M., Man, P. et al. Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK. Biometals 29, 715–729 (2016). https://doi.org/10.1007/s10534-016-9947-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10534-016-9947-z
Keywords
- Hydrogen sulfide
- Heme-based oxygen sensor
- Autophosphorylation
- Histidine kinase
- Intramolecular catalytic regulation
- Two-component signal transduction