Skip to main content
Log in

Synthesis, characterization and theoretical calculations of (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride complexes: in vitro cytotoxic evaluations against human cancer cell lines

  • Published:
BioMetals Aims and scope Submit manuscript

A Correction to this article was published on 11 August 2020

This article has been updated

Abstract

The gold(III) complexes of the type (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride, [(DACH)Au(pn)]Cl3, [where DACH = cis-, trans-1,2- and S,S-1,2-diaminocyclohexane and pn = 1,3-diaminopropane] have been synthesized and characterized using various spectroscopic and analytical techniques including elemental analysis, UV–Vis and FTIR spectroscopy; solution as well as solid-state NMR measurements. The solid-state 13C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and 1,3-diaminopropane (pn) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was checked by UV–Vis spectroscopy and NMR measurements. The molecular structure of compound 1 (containing cis-1,2-DACH) was determined by X-ray diffraction analysis. The structure of 1 consists of [(cis-DACH)Au(pn)]3+ complex ion and chloride counter ions. Each gold atom in the complex ion adopts a distorted square-planar geometry. The structural details and relative stabilities of the four possible isomers of the complexes were also estimated at the B3LYP/LANL2DZ level of theoretical calculations. The computational study demonstrates that trans- conformations are slightly more stable than the cis- conformations. The antiproliferative effects and cytotoxic properties of the mixed ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 3 (containing 1S,2S-(+)-1,2-(DACH)) is the most effective antiproliferative agent. The IC50 data reveal that the in vitro cytotoxicity of complex 3 against SGC7901 cancer cells manifested similar and very pronounced cytotoxic effects with respect to cisplatin. Moreover, the electrochemical behavior, and the interaction of complex 3 with two well-known model proteins, namely, hen egg white lysozyme and bovine serum albumin is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 11 August 2020

    Due to an unfortunate turn of events, the main affiliation of Dr. Saleh Altuwaijri was omitted from the above mentioned three articles. The complete affiliations are published below and should be treated as definitive.

References

  • Ahmad S (2010) Platinum–DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 7:543–566

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Al Tamimi DM, Isab AA, Alkhawajah AMM, Shawarby MA (2012) Histological changes in kidney and liver of rats due to gold(III) compound [Au(en)Cl2]Cl. PLoS One 7:e51889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Jaroudi SS, Fettouhi M, Wazeer MIM, Isab AA, Altuwaijri S (2013) Synthesis, characterization and cytotoxicity of new gold(III) complexes with 1,2-diaminocyclohexane: influence of stereochemistry on antitumor activity. Polyhedron 50:434–442

    Article  CAS  Google Scholar 

  • Al-Jaroudi SS, Monim-ul-Mehboob M, Altaf M, Al-Saadi AA, Wazeer MIM, Altuwaijri S, Isab AA (2014) Synthesis, spectroscopic characterization, electrochemical behavior and computational analysis of mixed diamine ligand gold(III) complexes: antiproliferative and in vitro cytotoxic evaluations against human cancer cell lines. Biometals 27:1115–1136

    Article  CAS  PubMed  Google Scholar 

  • Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans II:S1–S19

    Article  Google Scholar 

  • Al-Maythalony BA, Wazeer MIM, Isab AA (2009) Synthesisand characterization of gold(III) complexes with alkyldiamineligands. Inorg Chim Acta 362:3109–3113

    Article  CAS  Google Scholar 

  • Al-Sarraf M, Kish J, Ensley J, Metch B, Rinehart J, Schuller D, Coltman C (1987) Platinum analogs in recurrent and advancedhead and neck cancer. Proc Am Soc Clin Oncol 6:A485

    Google Scholar 

  • Arsenijevic M, Milovanovic M, Volarevic V, Djekovic A, Kanjevac T, Tatjana A, Nebojsa D, Svetlana D, Bugarcic Z (2012) Cytotoxicity of gold(III) complexes on A549 human lung carcinoma epithelial cell line. Med Chem 8:2–8

    Article  CAS  PubMed  Google Scholar 

  • Beck W, Fehlhammer WP, Pollmann P, Schuierer E, Feldl K (1967) Darstellung, IR- und Elektronenspektren vonAzido-Metall-Komplexen. Chem Ber 100:2335–2361

    Article  CAS  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximationwith correct asymptotic behavior. Phys Rev 38:3098

    Article  CAS  Google Scholar 

  • Berger I, Nazarov AA, Hartinger CG, Groessl M, Valiahdi SM, Jakupec MA, Keppler BK (2007) A glucose derivative asnatural alternative to the cyclohexane-1,2-diamine ligandin the anticancer drug oxaliplatin. Chem Med Chem 2:505–514

    Article  CAS  PubMed  Google Scholar 

  • Bertrand B, Bodio E, Richard P, Picquet M, Gendre PL, Casini A (2015) Gold(I) N-heterocyclic carbene complexes with an “activable” ester moiety: possible biological applications. J Organomet Chem 775:124–129

    Article  CAS  Google Scholar 

  • Best SL, Sadler PJ (1996) Gold drugs: mechanism of action and toxicity. Gold Bull 29:87–93

    Article  CAS  Google Scholar 

  • Bindoli A, Rigobello MP, Scutari G, Gabbiani C, Casini A, Messori L (2009) Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord Chem Rev 253:1692–1707

    Article  CAS  Google Scholar 

  • Bitha P, Child RG, River P, Hlavka JJ, Lin YI (1989) Platinum complexes of amines with novel dibasic acids, U. S. Patent Number 4,866,092

  • Bruck MA, Bau R, Noji M, Inagaki K, Kidani Y (1984) Thecrystal structures and absolute configurations of the antitumorcomplexes Pt(oxalato)(1R,2R-cyclohexanediamine) and Pt(malonato)(1R,2R-cyclohexanediamine). Inorg Chim Acta 92:279–284

    Article  CAS  Google Scholar 

  • Buckley RG, Elsome AM, Fricker SP, Henderson GR, Theobald BRC, Parish RV, Howe BP, Kelland LR (1996) Antitumor properties of some 2-[(dimethylamino)methyl]phenyl gold(III) complexes. Med Chem 39:5208–5214

    Article  CAS  Google Scholar 

  • Burchenal JH, Kalaher K, O’Toole T, Chisholm J (1977) Lackof cross-resistance between certain platinum coordinationcompounds in mouse leukemia. Cancer Res 37:3455–3457

    CAS  PubMed  Google Scholar 

  • Burchenal JH, Kalaher K, Dew K (1978) Studies of crossresistance, synergistic combinations and blocking of activity of platinumderivatives. Biochimie 60:961–965

    Article  CAS  Google Scholar 

  • Burchenal JH, Kalaher K, Dew K, Lokys L (1979) Rationale for development of platinum analogs. Cancer Treat Rep 63:1493–1498

    CAS  PubMed  Google Scholar 

  • Calamai P, Carotti S, Guerri A, Mazzei T, Messori L, Mini E, Orioli P, Speroni GP (1998) Cytotoxic effects of gold (III) complexes on established human tumor lines sensitive and resistant to cisplatin. Anticancer Drug Des 13:67–80

    CAS  PubMed  Google Scholar 

  • Casini A, Hartinger C, Gabbiani C, Mini E, Dyson PJ, Keppler BK, Messori L (2008) Gold(III) compounds as anticanceragents: relevance of gold– protein interactions for their mechanism of action. J Inorg Biochem 102:564–575

    Article  CAS  PubMed  Google Scholar 

  • Casini A, Kelter G, Gabbiani C, Cinellu MA, Minghetti G, Fregona D, Fiebig HH, Messori L (2009) Chemistry, antiproliferativeproperties, tumor selectivity, and molecularmechanisms of novel gold(III) compounds for cancer treatment:a systematic study. J BiolInorg Chem 14:1139–1149

    CAS  Google Scholar 

  • Cattaruzza L, Fregona D, Mongiat M, Ronconi M, Fassina A, Colombatti A, Aldinucci D (2011) Antitumor activity of gold(III)-dithiocarbamato derivatives on prostate cancer cells and xenografts. Int J Cancer 128:206–215

    Article  CAS  PubMed  Google Scholar 

  • Chaney SG (1995) The chemistry and biology of platinumcomplexes with the 1,2-diaminocyclohexane carrier ligand(review). Int J Oncol 6:1291–1305

    CAS  PubMed  Google Scholar 

  • Che CM, Sun RWY, Yu WY, Ko CB, Zho NY, Sun Z (2003) Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem Commun 8:1718–1729

    Article  Google Scholar 

  • Cleare MJ, Hydes PC, Malerbi BW, Watkins DM (1978) Antitumor platinum complexes: relationship between chemical properties and activity. Biochimie 60:835–850

    Article  CAS  Google Scholar 

  • Cossu F, Matovic Z, Radanovic D, Ponticelli G (1994) Cytotoxic activity of some gold(III) complexes. Farmaco 49:301–302

    CAS  PubMed  Google Scholar 

  • Cutillas N, Yellol GS, de Haro C, Vicente C, Rodriguez V, Ruiz J (2013) Anticancer cyclometalated complexes of platinum group metals and gold. Coord Chem Rev 257:2784–2797

    Article  CAS  Google Scholar 

  • Dhar S, Lippard SJ (2011) Current status and mechanism of action of platinum-based drugs Bioinorg. Med Chem 3:79–96

    Google Scholar 

  • Ellson R, Stearns R, Mutz M, Brown C, Browning B, Harris D, Qureshi S, Shieh J, Wold D (2005) In situ DMSO hydration measurements of HTS compound libraries. Comb Chem High Throughput Screen 8:489–498

    Article  CAS  PubMed  Google Scholar 

  • Esumi K, Nawa M, Aihara N, Usui K (1998) growth of rodlike Au/Pt particles in cationic micelles by UV irradiation. New J Chem 20:719–720

    Article  Google Scholar 

  • Francesco AMD, Ruggiero A, Riccardi R (2002) Cellular and molecular aspects of drugs of the future: oxaliplatin. Cell Mol Life Sci 59:1914–1927

    Article  PubMed  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M A, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A1 Gaussian Inc, Wallingford

  • Giovagnini L, Ronconi L, Aldinucci D, Lorenzon D, Sitran S, Fregoni DJ (2005) Synthesis, characterization, and comparative in vitro cytotoxicity studies of platinum(II), palladium(II), and gold(III) methylsarcosinedithiocarbamatecomplexes. J Med Chem 48:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Mushin M, Kirkpatrick P (2004) Oxaliplatin. Nat Rev Drug Discov 3:11–12

    Article  CAS  PubMed  Google Scholar 

  • Gulloti M, Pasini A, Ugo R, Filippeschi S, Marmonti L, Spreafico F (1984) Enantiomeric cisplatin analogues: an investigation on their activity towards tumors in mice. Inorg Chim Acta 91:223–227

    Article  Google Scholar 

  • Hanessian S, Wang J (1993) Synthesis and biological evaluation of novel chiral non-racemic diaminoplatinum analogs based on a tetrahydrophan motif. Can J Chem 71:886–895

  • Haruko I, Junnosuke F, Kazuo S (1967) Absorption spectra and circular dichroisms of metal complexes. I. Platinum(II)-, palladium(II)- and gold(III)-complexes containing optically active diamines. Bull Chem Soc Jpn 40:2584–2591

    Article  Google Scholar 

  • Hayashi R, Nakatsui K, Sugiyama D, Kitajima T, Oohara N, Sugiya M, Osada S, Kodama H (2014) Anti-tumor activities of Au(I) complexed with bisphosphines in HL-60 cells. J Inorg Biochem 137:109–114

    Article  CAS  PubMed  Google Scholar 

  • Hoeschele JD, Showalter HD, Kraker AJ, Elliott WL, Roberts BJ, Kampf JW (1994) Synthesis, structural characterization, and antitumor properties of a novel class of large-ringplatinum(II) chelate complexes incorporating the cis-1,4-diaminocyclohexane ligand in a unique locked boat conformation. J Med Chem 37:2630–2636

    Article  CAS  PubMed  Google Scholar 

  • Johnson NP, Butour JL, Villani G, Wimmer FL, Defais M, Pierson V, Brabec V (1989) Metal antitumor compounds: themechanism of action of platinum complexes. Prog. Clin Biochem Med 10:1–24

    Article  CAS  Google Scholar 

  • Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  CAS  PubMed  Google Scholar 

  • Kemp S, Wheate NJ, Buck DP, Nikac M, Collins JG, Wright JRA (2007) The effect of ancillary ligand chiralityand phenanthroline functional group substitution on thecytotoxicity of platinum(II)-based metallointercalators. J Inorg Biochem 101:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Kidani Y (1991) Preparative development of antiumor1,2-cyclohexanediamine platinum complexes. Trends Inorg Chem 1:107–125

    Google Scholar 

  • Kidani Y, Inagaki K, Saito R, Tsukagoshi S (1977) Synthesisand anti-tumor activities of platinum(II) complexes of 1,2-diaminocyclohexane isomers and their related derivatives. J Clin Hematol Oncol 7:197–202

    CAS  Google Scholar 

  • Kidani Y, Inagaki K, Iigo M, Hoshi A, Kuretani K (1978) Antitumor activity of 1,2-diaminocyclohexane–platinum complexes against sarcoma-180 ascites form. Med Chem 21:1315–1318

    Article  CAS  Google Scholar 

  • Kidani Y, Noji M, Tashiro T (1980) Antitomur activity of platinum(II) complexes of 1,2-diaminocyclohexane isomers. Jpn J Cancer Res 71:637–643

    CAS  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of theelectron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  • Liu X, Shen H, Zhu H, Cui K, Gou S (2007) In vitro cytotoxicity study on platinum(II) complexes with epoxysuccinates as leaving group. Bioorg Med Chem Lett 17:3831–3834

    Article  CAS  PubMed  Google Scholar 

  • Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structure. Appl Cryst 39:453–457

    Article  CAS  Google Scholar 

  • Messori L, Abbate F, Marco G, Orioli P, Fontani M, Mini E, Mazzei T, Carotti S, O’Connell T, Zanello P (2000) Gold-(III) complexes as potential antitumor agents: solution chemistry and cytotoxic properties of some selected gold(III) compounds. J Med Chem 43:3541–3548

    Article  CAS  PubMed  Google Scholar 

  • Milacic V, Dou QP (2009) The tumor proteasome as a novel target for gold(III) complexes: implications for breast cancer therapy. Coord Chem Rev 253:1649–1660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milacic V, Chen D, Ronconi L, Piwowar KRL, Fregona V, Dou QP (2006) A novel anticancer gold(III) dithiocarbomate compound in human breast cancer cell cultures and xenografts. Cancer Res 66:10478–10486

    Article  CAS  PubMed  Google Scholar 

  • Misset JL, Bleiberg H, Sutherland W, Bekradda M, Cvitkovic E (2000) Oxaliplatin clinical activity: a review. Crit Rev Oncol Hematol 35:75–93

    Article  CAS  PubMed  Google Scholar 

  • Monti E, Gariboldi M, Maiocchi A, Marengo E, Cassino C, Gabano E, Osella D (2005) Cytotoxicity of platinum(ii) conjugate models. the effect of chelating arms and leaving groups on cytotoxicity: a QSAR approach. J Med Chem 48:857–866

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Intl Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • Noji M, Okamoto K, Kidani Y, Tashiro T (1981) Relation ofconformation to antitumor activity of platinum(II) complexesof 1,2-cyclohexanediamine and 2-(aminomethyl)cyclohexylamine isomers against leukemia P388. J Med Chem 24:508–515

    Article  CAS  PubMed  Google Scholar 

  • Ortiz AG, Dulk H, Brouwer J, Kooijman H, Spek AL, Reedijk JJ (2007) The synthesis, chemical and biological properties of dichlorido(azpy)gold(III) chloride (azpy = 2-(phenylazo)pyridine) and the gold-induced conversion of the azpy ligand to the chloride of the novel tricyclic pyrido[2,1-c][1,2,4]benzotriazin-11-ium cation. Inorg Biochem 101:1922–1930

    Article  Google Scholar 

  • Ott I (2009) On the medicinal chemistry of gold complexes as anticancer drugs. Coord Chem Rev 253:1670–1681

    Article  CAS  Google Scholar 

  • Panteli N, Stanojkovi TP, Zmejkovski BB, Sabo TJ, Kaluderovic GN (2015) Eur J Med Chem 90:766–774

    Article  Google Scholar 

  • Pasini A, Velcich A, Mariani A (1982) Absence of diastereoisomericbehaviour in the interaction of chiral platinumanticancer compounds with DNA. Chem Biol Interact 42:311–320

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino T, Kudera S, Liedl T, Javier AM, Manna L, Parak WJ (2005) On the development of colloidal nanoparticlestowards multifunctional structures and their possible usefor biological applications. Small 1:48–63

    Article  CAS  PubMed  Google Scholar 

  • Raymond E, Faivre S, Woynarowski JM, Chaney SG (1998) Oxaliplatin: mechanism of action and antineoplastic activity. Semin Oncol 25:4–12

    CAS  PubMed  Google Scholar 

  • Ronconi L, Marzano C, Zanello P, Corsini V, Miolo G, Macca C, Trevisan A, Fregona D (2006) Gold(III) dithiocarbamatederivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties. J Med Chem 49:1648–1657

    Article  CAS  PubMed  Google Scholar 

  • Ronconi L, Aldinucci D, Dou QPD (2010) Latest insights intothe anticancer activity of gold(III)-dithiocarbamato complexes. Anticancer Agents Med Chem 10:283–292

    Article  CAS  PubMed  Google Scholar 

  • Rothenburger C, Galanski M, Arion VB, Görls H, Weigand W, Keppler BK (2006) Synthesis and characterization of [(1R,2R)-trans-diaminocyclohexane]platinum(II) coordinated to sulfur and selenium amino acids. Eur J Inorg Chem 2006:3746–3752

    Article  Google Scholar 

  • Sadler PJ (1976) The biological chemistry of gold: a metallo-drug and heavy-atom label with variablevalency. Struct Bond 29:171–214

    Article  CAS  Google Scholar 

  • Sadler PJ, Sue RE (1994) The chemistry of gold drugs. Met Based Drugs 1:107–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saggioro D, Rigobello MP, Paloschi L, Folda A, Moggach SA, Parsons S, Ronconi L, Fregona D, Bindoli A (2007) Gold(III)-dithiocarbamato complexes induce cancer cell death triggered by thioredoxin redox system inhibition and activation of ERK pathway. Chem Biol 14:1128–1139

    Article  CAS  PubMed  Google Scholar 

  • Sava G, Bergamo A, Dyson PJ (2011a) Metal-based antitumor drugs in the post-genomic era: what comes next? Dalton Trans 40:9069–9072

    Article  CAS  PubMed  Google Scholar 

  • Sava G, Bergamo A, Dyson PJ (2011b) Metal-based antitumour drugs in the post-genomic era: what comes next? Dalton Trans 40:9069–9075

    Article  CAS  PubMed  Google Scholar 

  • Shaw CF (1999) Gold-based therapeutic agents. Chem Rev 99:2589–2600

    Article  CAS  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  • Spek AL (2009) Structure validation in chemical. Crystallogr Acta Crystallogr D 65:148–155

    Article  CAS  PubMed  Google Scholar 

  • Stoe, Cie, (2006) X-Area V1.35 and X-RED32 V1.31 Software, Stoe and Cie GmbH, Darmstadt

  • Sun RWY, Che CM (2009) The anti-cancer properties ofgold(III) compounds with dianionic porphyrin and tetradentateligands. Coord Chem Rev 253:1682–1691

    Article  CAS  Google Scholar 

  • Taatjes DJ, Sobel BE, Budd RC (2008) Morphological andcytochemical determination of cell death by apoptosis. Histochem Cell Biol 129:33–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takemura G, Minatoguchi MS, Fujiwara H (2013) Cardiomyocyteapoptosis in the failing heart a critical review fromdefinition and classification of cell death. Int J Cardio 167:2373–2386

    Article  Google Scholar 

  • Thayer AM (2010) Pt drugs take their roll. Eng. News 88:24–28

    Article  Google Scholar 

  • Tieking ERT (2008) Anti-cancer potential of gold complexes. Inflammopharmacology 16:138–142

    Article  Google Scholar 

  • To YF, Sun RWY, Chen VSF, Chan WY, Yu PKH, Tam CM, Che C, Lin LS (2009) Gold(III) porphyrin complex is more potent than cisplatin in inhibiting growth of nasopharyngeal carcinoma in vitro and in vivo. Int J Cancer 124:1971–1979

    Article  CAS  PubMed  Google Scholar 

  • van Rijt SH, Sadler PJ (2009) Current applications and futurepotential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov Today 14(23–24):1089–1097

    Article  PubMed Central  PubMed  Google Scholar 

  • Vivek S, Kyoungweon P, Mohan S (2009) Colloidal dispersionof gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self assembly. Mater Sci Eng R 65:1–38

    Article  Google Scholar 

  • Vollano JF, Al-Baker S, Dabrowiak JC, Schurig JE (1987) Comparative antitumor studies on platinum(II) and platinum(IV) complexes containing 1,2-diaminocyclohexane. J Med Chem 30:716–719

    Article  CAS  PubMed  Google Scholar 

  • Wadt WR, Hay PJ (1985a) Ab initio effective core potentials formolecular calculations. Potentials for the transition metalatoms Sc to Hg. J Chem Phys 82:270–283

    Article  Google Scholar 

  • Wadt WR, Hay PJ (1985b) Ab initio effective core potentials for molecular calculations. Potentials for main group element Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  • Wadt WR, Hay PJ (1985c) Ab initio effective core potentials formolecular calculations. Potentials for K to Au including theoutermost core orbitals. J Chem. Phys 82:299–305

    Article  Google Scholar 

  • Wang X, Guo XZ (2011) Bioinorganic Medi Chem, Wiley-VCH, Ch 4:97-149

  • Yu CW, Li KK, Pang SK, Au-Yeung SC, Ho YP (2006) Anticancer activity of a series of platinum complexes integrating demethylcantharidin with isomers of 1,2-diaminocyclohexane. Bioorg Med Chem Lett 16:1686–1691

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Lou L, Liu W, Zhu H, Ye Q, Chen X, Gao W, Hou S (2008) Synthesis and anticancer activity of lipophilic platinum(II) complexes of 3,5-diisopropylsalicylate. Eur J Med Chem 43:1438–1443

    Article  CAS  PubMed  Google Scholar 

  • Zdraveski ZZ, Mello JA, Farinelli CK, Essigmann JM, Marinus MG (2002) MutS preferentially recognizes cisplatin over oxaliplatin modified DNA. J Biol Chem 277:1255–1260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author(s) would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project no. 10-BIO1368-04 as part of the National Science, Technology and Innovation Plan and to the Deanship of Scientific Research (DSR) for the internal Project IN 121049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anvarhusein A. Isab.

Ethics declarations

Conflict of interest

The authors declared there is no conflict of interest.

Ethical statement

The authors would like to confirm that the work described has not been published before; that it is not under consideration for publication anywhere else; that its publication has been approved by all co-authors, as well as by the responsible authorities—tacitly or explicitly—at the institute where the work has been carried out. The publisher will not be held legally responsible should there be any claims for compensation.

Research involving human participants and/or animals and informed consent

There was no experiment carried out using human or animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Jaroudi, S.S., Altaf, M., Al-Saadi, A.A. et al. Synthesis, characterization and theoretical calculations of (1,2-diaminocyclohexane)(1,3-diaminopropane)gold(III) chloride complexes: in vitro cytotoxic evaluations against human cancer cell lines. Biometals 28, 827–844 (2015). https://doi.org/10.1007/s10534-015-9869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9869-1

Keywords

Navigation