Advertisement

BioMetals

, Volume 28, Issue 5, pp 803–816 | Cite as

Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants

  • Priscila Lupino Gratão
  • Carolina Cristina Monteiro
  • Tiago Tezotto
  • Rogério Falleiros Carvalho
  • Letícia Rodrigues Alves
  • Leila Priscila Peters
  • Ricardo Antunes AzevedoEmail author
Article

Abstract

Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.

Keywords

Cadmium Micro-Tom Grafting Signaling Oxidative stress 

Notes

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Grant no.09/54676-0). We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) (R.A.A. and L.P.P.), and FAPESP (P.L.G., C.C.M. and T.T.) for the fellowships and scholarships granted.

References

  1. Ahmad A, Hadi F, Ali N (2015) Effective Phytoextraction of cadmium (Cd) with increasing concentration of total phenolics band free proline in Cannabis sativa (L) plant under various treatments of fertilizers, plant growth regulators and sodium salt. Int J Phytorem 17:56–65CrossRefGoogle Scholar
  2. Ahmad P, Jaleel CA, Sharma S (2010) Antioxidant defense system, lipid  peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physl 57:509–517Google Scholar
  3. Akhter MF, Omelon CR, Gordon RA, Moser D, Macfie SM (2014) Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ Exp Bot 100:10–19CrossRefGoogle Scholar
  4. Al-Khateeb W, Al-Qwasemeh H (2014) Cadmium, copper and zinc toxicity effects on groth, proline content and genetic stability of Solanum nigrum L. a crop wild relative for tomato, comparative study. Physiol Mol Biol Plants 20:31–39PubMedCentralCrossRefPubMedGoogle Scholar
  5. Amaro ACE, Macedo AC, Ramos ARP, Goto R, Ono EO, Rodrigues JD (2014) The use of grafting to improve the net photosynthesis of cucumber. Theor Exp Plant Physiol 26:241–249CrossRefGoogle Scholar
  6. Arao T, Takeda H, Nishihara E (2008) Reduction of cadmium translocation from roots to shoots in eggplent (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Sci Plant Nutr 54:555–559CrossRefGoogle Scholar
  7. Arruda MAZ, Azevedo RA (2009) Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Ann Appl Biol 155:301–307CrossRefGoogle Scholar
  8. Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292Google Scholar
  9. Azevedo RA, Lea PJ (2011) Research on abiotic and biotic stress—what next? Ann Appl Biol 159:317–319CrossRefGoogle Scholar
  10. Azevedo RA, Damerval C, Landry J, Lea PJ, Bellato CM, Meinhardt LW, Le Guilloux M, Delhaye S, Toro AA, Gaziola SA, Berdejo BDA (2003) Regulation of maize metabolism and endosperm protein synthesis by opaque and floury mutations. Eur J Biochem 270:4898–4908CrossRefPubMedGoogle Scholar
  11. Bester PK, Lobnik F, Erzen I, Kastelec D, Zupan M (2013) Prediction of cadmium concentration in selected home-produced vegetables. Ecotoxicol Environ Saf 96:182–190CrossRefPubMedGoogle Scholar
  12. Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175CrossRefPubMedGoogle Scholar
  13. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–259CrossRefPubMedGoogle Scholar
  14. Carvalho RF, Monteiro CC, Caetano AC, Dourado MN, Gratão PL, Haddad CKB, Peres LEP, Azevedo RA (2013) Leaf senescense in tomato mutants as affected by irradiance and phytohormones. Biol Plant 57:749–757CrossRefGoogle Scholar
  15. Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrated long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120PubMedCentralCrossRefPubMedGoogle Scholar
  16. Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts M, Lammel J, Broadley MR (2011) Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci Rep 1:72PubMedCentralCrossRefPubMedGoogle Scholar
  17. Christou A, Manganaris GA, Fotopoulos V (2014) Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ Exp Bot 107:46–54CrossRefGoogle Scholar
  18. Cia MC, Guimarães ACR, Medici LO, Chabregas SM, Azevedo RA (2012) Antioxidant response to water deficit by drought-tolerant and -sensitive sugarcane varieties. Ann Appl Biol 161:313–324CrossRefGoogle Scholar
  19. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940CrossRefPubMedGoogle Scholar
  20. DalCorso G, Fasani E, Furini A (2013) Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Front Plant Sci 4:1–7CrossRefGoogle Scholar
  21. Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv Azad). J Exp Bot 52:1101–1109CrossRefPubMedGoogle Scholar
  22. Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo RA (2013) Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol 163:494–507Google Scholar
  23. Duman F, Koca FD (2014) Single and combined effects of exposure concentration and duration on biological responses of Ceratophyllum demersum L. Exposed to Cr species. Int J Phytorem 16:1192–1208CrossRefGoogle Scholar
  24. Ellouzi H, Karim Ben Hamed K, Asensi-Fabado MA, Maren Müller M, Abdelly C, Munné-Bosch S (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritime. Planta 237:1311–1323CrossRefPubMedGoogle Scholar
  25. Ellouzi H, Ben-Hamed K, Hernadez I, Cela J, Muller M, Magne C, Abdelly C, Munne-Bosch S (2014) A comparative study of the earky osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240:1299–1317Google Scholar
  26. Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090Google Scholar
  27. Francini A, Sebatiani L (2010) Copper effects on Prunus persica in two different grafting (P. persica × P. amygdalus and P. cerasifera). J Plant Nutr 33:1338–1352CrossRefGoogle Scholar
  28. Fumagalli P, Comolli R, Ferre C, Ghiani A, Gentili R, Citterio S (2014) The rotation of White lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy increase the benefits of soil phytoremediation. J Environ Manage 145:35–42CrossRefPubMedGoogle Scholar
  29. Gallego SM, Pena Pena, Barcia RA, Azpilicueta CE, Lannone MF, Maria F, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46CrossRefGoogle Scholar
  30. Gay C, Collins J, Gebicki JM (1999) Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem 273:149–155CrossRefPubMedGoogle Scholar
  31. Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261CrossRefPubMedGoogle Scholar
  32. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stressin plants: unraveling the signaling networks. Front Plant Sci 5:151PubMedCentralCrossRefPubMedGoogle Scholar
  33. Gonçalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV, Bisognin DA, Dressler VL, Flores EMM (2009) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47:814–821CrossRefPubMedGoogle Scholar
  34. Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333CrossRefGoogle Scholar
  35. Gratão PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67:387–394CrossRefGoogle Scholar
  36. Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96CrossRefPubMedGoogle Scholar
  37. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494Google Scholar
  38. Hediji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaibi W, Gallusci P (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicol Environ Saf 73:1965–1974CrossRefPubMedGoogle Scholar
  39. Hippler FWR, Boaretto RM, Quaggio JA, Azevedo RA, Mattos D Jr (2015) Towards soil management with Zn and Mn: estimates of fertilisation efficacy of Citrus trees. Ann Appl Biol 166:484–495CrossRefGoogle Scholar
  40. Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient-tobacco plants. Environ Exp Bot 109:201–211CrossRefGoogle Scholar
  41. Jozefczak M, Keunen E, Schat H, Bliek M, Hernandez LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A (2014) Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem 83:1–9CrossRefPubMedGoogle Scholar
  42. Kováčik J, Babula P, Hedbavnya J, Klejdus B (2014) Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium. J Hazard Mater 273:110–117CrossRefPubMedGoogle Scholar
  43. Kovacs V, Gondor OK, Szalai G, Darko E, Majlath I, Janda T, Pal M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19CrossRefPubMedGoogle Scholar
  44. Lea PJ, Azevedo RA (2007) Nitrogen use efficiency: II. Amino acid metabolism. Ann Appl Biol 151:269–275CrossRefGoogle Scholar
  45. Li S, Yu J, Zhu M, Zhao F, Luan S (2012) Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant Cell Environ 35:1998–2013CrossRefPubMedGoogle Scholar
  46. Liu J, Li K, Xu J, Liang J, Lu X, Yang J, Zhu Q (2003) Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res 83:271–281CrossRefGoogle Scholar
  47. Liu SL, Yang RJ, Ma MD, Dan F, Zhao Y, Jiang P, Wang MH (2015) Effects of exougenous NO on the growth, mineral nutrient content, antioxidant system, and ATPase activities of Trifolium repens L. plants under cadmium stress. Acta Physiol Plant 37:1721CrossRefGoogle Scholar
  48. Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37CrossRefPubMedGoogle Scholar
  49. Martínez-Ballesta MC, Alcaraz-Lopez C, Muries B, Mota-Cadenas C, Carvajal M (2010) Physiological aspects of rootstock-scion interactions. Sci Hortic 127:112–118CrossRefGoogle Scholar
  50. Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533CrossRefPubMedGoogle Scholar
  51. Mishra B, Sangwan RS, Mishra S, Jadaun JS, Sabir F, Sangwan NS (2014) Effect of cadmium stress on inductive enzymatic and nonenzymatic responses of ROS and sugar metabolism in multiple shoot cultures of Ashwagandha (Withania somnifera Dunal). Protoplasma 251:1031–1045CrossRefPubMedGoogle Scholar
  52. Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, Tezotto T, Medici LO, Peres LEP, Azevedo RA (2011) Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot 71:306–320CrossRefGoogle Scholar
  53. Mori S, Uraguchi S, Ishikawa S, Arao T (2009) Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environ Exp Bot 67:127–132CrossRefGoogle Scholar
  54. Nogueirol RC, Monteiro FA, Gratão PL, Borgo L, Azevedo RA (2015) Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes. Environ Monit Assess 187:73CrossRefPubMedGoogle Scholar
  55. Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132Google Scholar
  56. Piotto FA, Tulmann-Neto A, Franco MR, Boaretto LF, Azevedo RA (2014) Rapid screening for selection of heavy metal-tolerant plants. Crop Breed Appl Biotechnol 14:1–7CrossRefGoogle Scholar
  57. Rendón MY, Gratão PL, Salva TJG, Azevedo RA, Bragagnolo N (2013) Antioxidant enzyme activity and hydrogen peroxide content during the drying of Arabica coffee beans. European Food Res Technol 236:753–758CrossRefGoogle Scholar
  58. Rouphael Y, Cardarelli M, Rea E, Colla G (2008) Grafting of cucumber as a means to minimize copper toxicity. Environ Exp Bot 63:49–58CrossRefGoogle Scholar
  59. Rouphael Y, Schwarz D, Krumbein A, Colla G (2010) Impact of grafting on product quality of fruit vegetables. Sci Hortic 127:172–179CrossRefGoogle Scholar
  60. Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847CrossRefGoogle Scholar
  61. Saibo NJ, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623PubMedCentralCrossRefPubMedGoogle Scholar
  62. Savvas D, Colla G, Rouphael Y, Schwarz D (2010) Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci Hortic 127:156–161CrossRefGoogle Scholar
  63. Savvas D, Ntatsi G, Barouchas P (2013) Impact of grating and rootstock genotype on cation uptake by cucumber (Cucumis sativus L.) exposed to Cd or Ni stress. Sci Hortic 149:86–96Google Scholar
  64. Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85CrossRefPubMedGoogle Scholar
  65. Shen G-M, Zhu C, Shangguan L-N, Du Q-Z (2012) The Cd-tolerant rice mutant cadH-5 is a high Cd accumulator and shows enhanced antioxidant activity. J Plant Nutr Soil Sci 175:309–318CrossRefGoogle Scholar
  66. Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernandez LE (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381Google Scholar
  67. Souza LA, Piotto FA, Nogueirol RC, Azevedo RA (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric 70:290–295Google Scholar
  68. Su Y, Liu J, Lu Z, Wang X, Zhang Z, Shi G (2014) Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ Exp Bot 97:40–48CrossRefGoogle Scholar
  69. Tezotto T, Favarin JL, Neto AP, Gratão PL, Azevedo RA, Mazzafera P (2013) Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF). Sci Agricola 70:263–267CrossRefGoogle Scholar
  70. Toselli M, Baldi E, Marcolini G, Malaguti D, Quartieri M, Sorrenti G (2008) Response of potted pear trees to increasing copper conventrations in Sandy and Clay-loam soils. J Plant Nutr 31:2089–2104CrossRefGoogle Scholar
  71. Trinchera A, Pandozy G, Rinaldi S, Crino P, Temperini Rea E (2013) Graft union formation in artichoke grafting onto wild and cultivated cardoon: An anatomical study. J Plant Physiol 170:1569–1578Google Scholar
  72. Vincent JM (1975) Manual Practico de Rizobiologia. Hemisferio Sur, Buenos AiresGoogle Scholar
  73. Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710Google Scholar
  74. Wang Y, Zhang J, Li JL, Ma XR (2014) Exogenous hydrogen peroxide enhanced the thermotolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity. Acta Physiol Plant 36:2915–2924CrossRefGoogle Scholar
  75. Xin JL, Huang BF, Yang JZ, Yang ZY (2013) Role of roots in cadmium accumulation of two water spinach cultivars: reciprocal grafting and histochemical experiments. Plant Soil 366:425–432CrossRefGoogle Scholar
  76. Xu J, Sun JH, Du LG, Liu XJ (2012) Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol 196:110–124CrossRefPubMedGoogle Scholar
  77. Zhang ZK, Liu SQ, Hao SQ, Liu SH (2010) Grafting increases the copper tolerance of cucumber seedlings by improvement of polyamine contents and enhancement of antioxidant enzymes activity. Agric Sci China 9:985–994CrossRefGoogle Scholar
  78. Zhou CF, Zhang K, Lin JW, Li Y, Chen NL, Zou XH, Hou XL, Ma XQ (2015) Physiological responses and tolerance mechanisnms to cadmium in Conyza Canadensis 17:280–289Google Scholar
  79. Zoghlami LB, Djebali W, Abbes Z, Hediji H, Maucourt M, Moing A, Brouquisse R, Chaibi W (2011) Metabolite modifications in Solanum lycopersicum roots and leaves under cadmium stress. Afr J Biotechnol 10:567–579Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Priscila Lupino Gratão
    • 1
  • Carolina Cristina Monteiro
    • 1
  • Tiago Tezotto
    • 2
  • Rogério Falleiros Carvalho
    • 1
  • Letícia Rodrigues Alves
    • 1
  • Leila Priscila Peters
    • 3
  • Ricardo Antunes Azevedo
    • 3
    Email author
  1. 1.Depto. de Biologia Aplicada à Agropecuária (DBAA)UNESP – Univ. Estadual PaulistaJaboticabalBrazil
  2. 2.Centro Universitário da Fundação de Ensino Octávio Bastos, UnifeobSão João da Boa VistaBrazil
  3. 3.Depto. de Genética, Escola Superior de Agricultura Luiz de Queiroz-ESALQUniversidade de São Paulo-USPPiracicabaBrazil

Personalised recommendations