Abdulla M, Chmielnicka J (1990) New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals. Biol Trace Elem Res 23:25–53
CAS
Article
Google Scholar
Agarwal R, Behari JR (2007) Effect of selenium pretreatment in chronic mercury intoxication in rats. Bull Environ Contam Toxicol 79:306–310. doi:10.1007/s00128-007-9226-3
CAS
PubMed
Article
Google Scholar
Agarwal R, Raisuddin S, Tewari S, Goel SK, Raizada RB, Behari JR (2010) Evaluation of comparative effect of pre- and posttreatment of selenium on mercury-induced oxidative stress, histological alterations, and metallothionein mRNA expression in rats. J Biochem Mol Toxicol 24:123–135. doi:10.1002/jbt.20320
CAS
PubMed
Google Scholar
Agha FE, Youness ER, Selim MMH, Ahmed HH (2014) Nephroprotective potential of selenium and taurine against mercuric chloride induced nephropathy in rats. Ren Fail 36:704–716. doi:10.3109/0886022X.2014.890012
CAS
PubMed
Article
Google Scholar
ATSDR (1999) Toxicological profile for mercury. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta. http://www.atsdr.cdc.gov/ToxProfiles/tp46.pdf. Accessed 15 Nov 2014
Bogden JD, Kemp FW, Troiano RA, Jortner BS, Timpone C, Giuliani D (1980) Effect of mercuric chloride and methylmercury chloride exposure on tissue concentrations of six essential minerals. Environ Res 21:350–359
CAS
PubMed
Article
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
CAS
PubMed
Article
Google Scholar
Brambila E, Liu J, Morgan DL, Beliles RP, Waalkes MP (2002) Effect of mercury vapor exposure on metallothionein and glutathione S-transferase gene expression in the kidney of nonpregnant, pregnant, and neonatal rats. J Toxicol Environ Health A 65:1273–1288. doi:10.1080/00984100290071405
CAS
PubMed
Article
Google Scholar
Brandão R, Borges LP, Nogueira CW (2009) Concomitant administration of sodium 2,3-dimercapto-1-propanesulphonate (DMPS) and diphenyl diselenide reduces effectiveness of DMPS in restoring damage induced by mercuric chloride in mice. Food Chem Toxicol 47:1771–1778. doi:10.1016/j.fct.2009.04.035
PubMed
Article
Google Scholar
Bridges CC, Zalups RK (2010) Transport of inorganic mercury and methylmercury in target tissues and organs. J Toxicol Environ Health B 13:385–410. doi:10.1080/10937401003673750
CAS
Article
Google Scholar
Cherian MG, Templeton DM, Gallant KR, Banerjee D (1987) Biosynthesis and metabolism of metallothionein in rat during perinatal development. Exp Suppl 52:499–505
CAS
Article
Google Scholar
Chmielnicka J, Brzeźnicka E, Sniady A (1986) Kidney concentrations and urinary excretion of mercury, zinc and copper following the administration of mercuric chloride and sodium selenite to rats. Arch Toxicol 59:16–20
CAS
PubMed
Article
Google Scholar
Chowdhury BA, Chandra RK (1987) Biological and health implications of toxic heavy metal and essential trace element interactions. Prog Food Nutr Sci 11:55–113
CAS
PubMed
Google Scholar
Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403
CAS
PubMed
Article
Google Scholar
Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662
CAS
PubMed
Article
Google Scholar
Ercal N, Gure-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress Part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 1:529–539
CAS
PubMed
Article
Google Scholar
Falnoga I, Tušek-Žnidarič M (2007) Selenium–mercury interactions in man and animals. Biol Trace Elem Res 119:212–220. doi:10.1007/s12011-007-8009-3
CAS
PubMed
Article
Google Scholar
Farina M, Brandão R, de Lara FS, Pagliosa LB, Soares FA, Souza DO, Rocha JB (2003) Profile of nonprotein thiols, lipid peroxidation and delta-aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium selenite. Toxicology 184:179–187
CAS
PubMed
Article
Google Scholar
Feng W, Wang M, Li B, Liu J, Chai Z, Zhao J, Deng G (2004) Mercury and trace element distribution in organic tissues and regional brain of fetal rat after in utero and weaning exposure to low dose of inorganic mercury. Toxicol Lett 152:223–234. doi:10.1016/j.toxlet.2004.05.001
CAS
PubMed
Article
Google Scholar
Fernandez EL, Dencker L, Tallkvist J (2007) Expression of ZnT-1 (Slc30a1) and MT-1 (Mt1) in the conceptus of cadmium treated mice. Reprod Toxicol 24:353–358. doi:10.1016/j.reprotox.2007.06.006
CAS
PubMed
Article
Google Scholar
Grandjean P et al (2008) The Faroes statement: human health effects of developmental exposure to chemicals in our environment. Basic Clin Pharmacol Toxicol 102:73–75. doi:10.1111/j.1742-7843.2007.00114.x
CAS
PubMed
Google Scholar
Haase H, Maret W (2008) Partial oxidation and oxidative polymerization of metallothionein. Electrophoresis 29:4165–4176
Article
Google Scholar
Iwai N, Watanabe C, Suzuki T, Suzuki KT, Tohyama C (1988) Metallothionein induction by sodium selenite at two different ambient temperatures in mice. Arch Toxicol 62:447–451
CAS
PubMed
Article
Google Scholar
Khan MA, Wang F (2009) Mercury–selenium compounds and their toxicological significance: toward a molecular understanding of the mercury–selenium antagonism. Environ Toxicol Chem 28:1567–1577. doi:10.1897/08-375.1
CAS
PubMed
Article
Google Scholar
Kostial K, Šimonović I, Pišonić M (1971) Lead absorption from the intestine in newborn rats. Nature 233:564
CAS
PubMed
Article
Google Scholar
Kostial K, Kello D, Jugo S, Rabar I, Maljković T (1978) Influence of age on metal metabolism and toxicity. Environ Health Perspect 25:81–86
CAS
PubMed Central
PubMed
Article
Google Scholar
Liu X, Jin T, Nordberg GF (1991) Increased urinary calcium and magnesium excretion in rats injected with mercuric chloride. Pharmacol Toxicol 68:254–259
CAS
PubMed
Article
Google Scholar
Liu X, Nordberg GF, Jin T (1992) Increased urinary excretion of zinc and copper by mercuric chloride injection in rats. Biometals 5:17–22
CAS
PubMed
Article
Google Scholar
Luque-Garcia JL, Cabezas-Sanchez P, Anunciação DS, Camara C (2013) Analytical and bioanalytical approaches to unravel the selenium–mercury antagonism: a review. Anal Chim Acta 801:1–13. doi:10.1016/j.aca.2013.08.043
CAS
PubMed
Article
Google Scholar
Magos L, Webb M (1976) Differences in distribution and excretion of selenium and cadmium or mercury after their simultaneous administration subcutaneously in equimolar doses. Arch Toxicol 36:63–69
CAS
PubMed
Article
Google Scholar
Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130(5S Suppl):1455S–1458S
CAS
PubMed
Google Scholar
Mehra RK, Bremner I (1984) Metallothionein-I in the plasma and liver of neonatal rats. Biochem J 217:859–862
CAS
PubMed Central
PubMed
Google Scholar
Miller RK (1983) Perinatal toxicology: its recognition and fundamentals. Am J Ind Med 4:205–244
CAS
PubMed
Article
Google Scholar
Mizzen CA, Cartel NJ, Yu WH, Fraser PE, McLachlan DR (1996) Sensitive detection of metallothioneins-1, -2 and -3 in tissue homogenates by immunoblotting: a method for enhanced membrane transfer and retention. J Biochem Biophys Methods 32:77–83
CAS
PubMed
Article
Google Scholar
Nielsen JB, Andersen O (1991) A comparison of the effects of sodium selenite and seleno-l-methionine on disposition of orally administered mercuric chloride. J Trace Elem Electrolytes Health Dis 5:245–250
CAS
PubMed
Google Scholar
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358
CAS
PubMed
Article
Google Scholar
Orct T, Lazarus M, Jurasović J, Blanuša M, Piasek M, Kostial K (2009) Influence of selenium dose on mercury distribution and retention in suckling rats. J Appl Toxicol 29:585–589. doi:10.1002/jat.1444
CAS
PubMed
Article
Google Scholar
Peixoto NC, Serafim MA, Flores EMM, Bebianno MJ, Pereira ME (2007) Metallothionein, zinc, and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury. Life Sci 81:1264–1271. doi:10.1016/j.lfs.2007.08.038
CAS
PubMed
Article
Google Scholar
Peixoto NC, Rocha LC, Moraes DP, Bebianno MJ, Dressler VL, Flores EM, Pereira ME (2008) Changes in levels of essential elements in suckling rats exposed to zinc and mercury. Chemosphere 72:1327–1332. doi:10.1016/j.chemosphere.2008.04.027
CAS
PubMed
Article
Google Scholar
Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT (1998) Effects of micronutrients on metal toxicity. Environ Health Perspect 106(Suppl 1):203–216
CAS
PubMed Central
PubMed
Article
Google Scholar
Perottoni J, Lobato LP, Silveira A, Rocha JB, Emanuelli T (2004a) Effects of mercury and selenite on delta-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. Environ Res 95:166–173. doi:10.1016/j.envres.2003.08.007
CAS
PubMed
Article
Google Scholar
Perottoni J, Rodrigues OE, Paixão MW, Zeni G, Lobato LP, Braga AL, Rocha JB, Emanuelli T (2004b) Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds. Food Chem Toxicol 42:17–28. doi:10.1016/j.fct.2003.08.002
CAS
PubMed
Article
Google Scholar
Ralston NV, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278:112–123. doi:10.1016/j.tox.2010.06.004
CAS
PubMed
Article
Google Scholar
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter RJ (2014) A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56:343–370. doi:10.1111/jpi.12132
CAS
PubMed
Article
Google Scholar
Rooney JP (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234:145–156. doi:10.1016/j.tox.2007.02.016
CAS
PubMed
Article
Google Scholar
Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926. doi:10.1007/s10534-010-9351-z
PubMed
Article
Google Scholar
Su L, Wang M, Yin ST, Wang HL, Chen L, Sun LG, Ruan DY (2008) The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicol Environ Saf 70:483–489. doi:10.1016/j.ecoenv.2007.05.018
CAS
PubMed
Article
Google Scholar
Telišman S (1995) Interactions of essential and/or toxic metals and metalloid regarding interindividual differences in susceptibility to various toxicants and chronic diseases in man. Arh Hig Rada Toksikol 46:459–476
PubMed
Google Scholar
U.S. Environmental Protection Agency, EPA (2002) Child-specific exposure factors handbook. EPA/600/P-00/002B. National Center for Environmental Assessment, Washington, DC. http://www.epa.gov/ncea. Accessed 10 Dec 2014
U.S. Environmental Protection Agency, EPA (2007) Inorganic mercury. Toxicity and exposure assessment for children’s health (TEACH) chemical summary. http://www.epa.gov/teach/chem_summ/mercury_inorg_summary.pdf. Accessed 15 Nov 2014
Watanabe C (2002) Modification of mercury toxicity by selenium: practical importance? Tohoku J Exp Med 196:71–77
CAS
PubMed
Article
Google Scholar
WHO (1986) Environmental Health Criteria 59: principles for evaluating health risks from chemicals during infancy and childhood: the need for a special approach. World Health Organization, Geneva
Google Scholar
Yang D-Y, Chen Y-W, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92. doi:10.1139/A08-001
CAS
Article
Google Scholar
Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–144
CAS
PubMed
Google Scholar