Skip to main content

Spoils of war: iron at the crux of clinical and ecological fitness of Pseudomonas aeruginosa

Abstract

Pseudomonas aeruginosa is a versatile environmental microorganism that also causes life-threatening opportunistic infections. At the root of this bacterium’s ability to survive in such diverse environments is its large suite of iron acquisition systems. More recently, studies have highlighted the ability of P. aeruginosa to compete with other organisms for this essential metallonutrient. This minireview provides an overview of the iron acquisition systems used by P. aeruginosa, with an emphasis on how these systems contribute to fitness in polymicrobial environments. We also provide an evolutionary perspective of how these systems were selected for in the native habitats of the Pseudomonads, while also highlighting factors that are unique to P. aeruginosa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adler C, Corbalan NS, Seyedsayamdost MR, Pomares MF, de Cristobal RE, Clardy J, Kolter R, Vincent PA (2012) Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS ONE 7:e46754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Albrecht-Gary A-M, Blanc S, Rochel N, Ocaktan AZ, Abdallah MA (1994) Bacterial iron transport: coordination properties of pyoverdin PaA, a peptidic siderophore of Pseudomonas aeruginosa. Inorg Chem 33:6391–6402

    Article  CAS  Google Scholar 

  3. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  4. Anzaldi LL, Skaar EP (2010) Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 78:4977–4989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  6. Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GL, Albrecht-Gary AM (2012) Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans 41:2820–2834

    Article  CAS  PubMed  Google Scholar 

  7. Braud A, Hannauer M, Mislin GL, Schalk IJ (2009a) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:3517–3525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009b) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091

    Article  CAS  PubMed  Google Scholar 

  9. Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329

    Article  CAS  PubMed  Google Scholar 

  10. Brickman TJ, Vanderpool CK, Armstrong SK (2006) Heme transport contributes to in vivo fitness of Bordetella pertussis during primary infection in mice. Infect Immun 74:1741–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo—transport of ferrous iron into bacteria. Biometals 19:143–157

    Article  CAS  PubMed  Google Scholar 

  12. Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611

    Article  CAS  PubMed  Google Scholar 

  13. Clarke PH (1982) The metabolic versatility of pseudomonads. Antonie Van Leeuwenhoek 48:105–130

    Article  CAS  PubMed  Google Scholar 

  14. Coleman JP, Hudson LL, McKnight SL, Farrow JM III, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M, Boucher R, Schwab U, Gilligan P, Pesci EC (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215:41–46

    Article  CAS  PubMed  Google Scholar 

  16. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645

    Article  CAS  PubMed  Google Scholar 

  17. Cornelis P, Dingemans J (2013) Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 3:75

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  PubMed  Google Scholar 

  19. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6:e27317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. De Vos D, De Chial M, Cochez C, Jansen S, Tummler B, Meyer JM, Cornelis P (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388

    Article  PubMed  Google Scholar 

  21. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  CAS  PubMed  Google Scholar 

  23. Dowling DN, Ogara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant-disease. Trends Biotechnol 12:133–141

    Article  CAS  Google Scholar 

  24. Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491

    Article  CAS  PubMed  Google Scholar 

  25. Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC, Doucet N, Rahme LG, Lepine F, Deziel E (2013) The end of an old hypothesis: the Pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol 20:1481–1491

    Article  CAS  PubMed  Google Scholar 

  26. Falagas ME, Bliziotis IA (2007) Pandrug-resistant gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29:630–636

    Article  CAS  PubMed  Google Scholar 

  27. Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13:965–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Friedman J, Lad L, Li H, Wilks A, Poulos TL (2004) Structural basis for novel delta-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa. Biochemistry 43:5239–5245

    Article  CAS  PubMed  Google Scholar 

  29. Furci LM, Lopes P, Eakanunkul S, Zhong S, MacKerell AD Jr, Wilks A (2007) Inhibition of the bacterial heme oxygenases from Pseudomonas aeruginosa and Neisseria meningitidis: novel antimicrobial targets. J Med Chem 50:3804–3813

    Article  CAS  PubMed  Google Scholar 

  30. Gisk B, Wiethaus J, Aras M, Frankenberg-Dinkel N (2012) Variable composition of heme oxygenases with different regiospecificities in Pseudomonas species. Arch Microbiol 194:597–606

    Article  CAS  PubMed  Google Scholar 

  31. Giske CG, Monnet DL, Cars O, Carmeli Y (2008) Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 52:813–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Greenwald J, Hoegy F, Nader M, Journet L, Mislin GL, Graumann PL, Schalk IJ (2007) Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. A role for ferrous iron. J Biol Chem 282:2987–2995

    Article  CAS  PubMed  Google Scholar 

  33. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027

    Article  CAS  PubMed  Google Scholar 

  34. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  35. Hagan EC, Mobley HL (2009) Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 71:79–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ (2012) The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–1708

    Article  CAS  PubMed  Google Scholar 

  37. Harrison F, Browning LE, Vos M, Buckling A (2006) Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 4:21

    Article  PubMed Central  PubMed  Google Scholar 

  38. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Henderson DP, Payne SM (1994) Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun 62:5120–5125

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  41. Hom K, Heinzl GA, Eakanunkul S, Lopes PE, Xue F, Mackerell AD Jr, Wilks A (2013) Small molecule antivirulents targeting the iron-regulated heme oxygenase (HemO) of P. aeruginosa. J Med Chem 56:2097–2109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hunter RC, Asfour F, Dingemans J, Osuna BL, Samad T, Malfroot A, Cornelis P, Newman DK (2013) Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. mBio 4(4):e00557–e005513

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW, Lamont IL (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 81(8):2697–2704

  45. Korgaonkar AK, Whiteley M (2011) Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 193:909–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci USA 110:1059–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606

    Article  CAS  PubMed  Google Scholar 

  48. Llamas MA, Imperi F, Visca P, Lamont IL (2014) Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 38:569–597

    Article  CAS  PubMed  Google Scholar 

  49. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R (1992) 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30:615–623

    Article  CAS  PubMed  Google Scholar 

  51. Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K (2009) Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. Microbiology 155:305–315

    Article  CAS  PubMed  Google Scholar 

  52. Martinez JL (2014) Short-sighted evolution of bacterial opportunistic pathogens with an environmental origin. Front Microbiol 5:239

    PubMed Central  PubMed  Google Scholar 

  53. Marvig RL, Damkiaer S, Khademi SM, Markussen TM, Molin S, Jelsbak L (2014) Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 5(3):e00966–e009614

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mashburn LM, Jett AM, Akins DR, Whiteley M (2005) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  CAS  PubMed  Google Scholar 

  56. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdine is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143(Pt 1):35–43

    Article  CAS  PubMed  Google Scholar 

  58. Mirleau P, Delorme S, Philippot L, Meyer J, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44

    Article  CAS  PubMed  Google Scholar 

  59. Mirleau P, Philippot L, Corberand T, Lemanceau P (2001) Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Appl Environ Microbiol 67:2627–2635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Moree WJ, Phelan VV, Wu CH, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci USA 109:13811–13816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Morris CE, Monteil CL, Berge O (2013) The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol 51:85–104

    Article  CAS  PubMed  Google Scholar 

  62. Murphy TF (2008) The many faces of Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Clin Infect Dis 47:1534–1536

    Article  PubMed  Google Scholar 

  63. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M (2014) Mechanisms of synergy in polymicrobial infections. J Microbiol 52:188–199

    Article  PubMed  Google Scholar 

  64. Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron—a metal at the host–pathogen interface. Cell Microbiol 12:1691–1702

    Article  CAS  PubMed  Google Scholar 

  65. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen AT, O’Neill MJ, Watts AM, Robson CL, Lamont IL, Wilks A, Oglesby-Sherrouse AG (2014) Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 196(12):2265–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. NNIS (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485

    Article  Google Scholar 

  68. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. O’Neill MJ, Wilks A (2013) The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. ACS Chem Biol 8:1794–1802

    Article  PubMed Central  PubMed  Google Scholar 

  70. Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has in Pseudomonas aeruginosa. Microbiology 146(Pt 1):185–198

    CAS  PubMed  Google Scholar 

  71. Oglesby AG, Farrow JM III, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, Vasil ML (2008) The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283:15558–15567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Otto BR, Verweij-van Vught AM, MacLaren DM (1992) Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol 18:217–233

    Article  CAS  PubMed  Google Scholar 

  73. Perry RD, Fetherston JD (2011) Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbe Infect/Inst Pasteur 13:808–817

    Article  CAS  Google Scholar 

  74. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Price-Whelan A, Dietrich LE, Newman DK (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I (2001) Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 183:6394–6403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Rombel IT, Lamont IL (1992) DNA homology between siderophore genes from fluorescent pseudomonads. J Gen Microbiol 138:181–187

    Article  CAS  PubMed  Google Scholar 

  78. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  PubMed  Google Scholar 

  79. Schalk IJ, Guillon L (2013a) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673

    Article  CAS  PubMed  Google Scholar 

  80. Schalk IJ, Guillon L (2013b) Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44:1267–1277

    Article  CAS  PubMed  Google Scholar 

  81. Schalk IJ, Mislin GL, Brillet K (2012) Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 69:37–66

    Article  PubMed  Google Scholar 

  82. Seviour T, Doyle LE, Lauw SJ, Hinks J, Rice SA, Nesatyy VJ, Webster RD, Kjelleberg S, Marsili E (2015) Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun 51(18):3789–3792

  83. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG (2008) Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 4:e1000184

    Article  PubMed Central  PubMed  Google Scholar 

  84. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    Article  CAS  PubMed  Google Scholar 

  85. Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res 9:1265–1277

    Google Scholar 

  86. Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP, Whiteley M (2014) Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci USA 111:7819–7824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2010) The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192:117–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Takase H, Nitanai H, Hoshino K, Otani T (2000a) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68:1834–1839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Takase H, Nitanai H, Hoshino K, Otani T (2000b) Requirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection. Infect Immun 68:4498–4504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Vasil ML (1986) Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology. J Pediatr 108:800–805

    Article  CAS  PubMed  Google Scholar 

  91. Vento S, Cainelli F, Temesgen Z (2008) Lung infections after cancer chemotherapy. Lancet Oncol 9:982–992

    Article  PubMed  Google Scholar 

  92. Visca P, Serino L, Orsi N (1992) Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdine. J Bacteriol 174:5727–5731

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193:3606–3617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Watrous J, Roach P, Heath B, Alexandrov T, Laskin J, Dorrestein PC (2013) Metabolic profiling directly from the Petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. Anal Chem 85:10385–10391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Wegele R, Tasler R, Zeng Y, Rivera M, Frankenberg-Dinkel N (2004) The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J Biol Chem 279:45791–45802

    Article  CAS  PubMed  Google Scholar 

  97. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  98. Xiong YQ, Vasil ML, Johnson Z, Ochsner UA, Bayer AS (2000) The oxygen- and iron-dependent sigma factor pvdS of Pseudomonas aeruginosa is an important virulence factor in experimental infective endocarditis. J Infect Dis 181:1020–1026

    Article  CAS  PubMed  Google Scholar 

  99. Yang L, Jelsbak L, Marvig RL et al (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 108:7481–7486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Angela Wilks, Dr. Sarah Michel, Geoffrey Heinzl, and Luke Brewer for helpful discussions of metals and metabolites during the preparation of this manuscript. Dr. Oglesby-Sherrouse’s Laboratory is supported by start-up support from the University of Maryland School of Pharmacy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amanda G. Oglesby-Sherrouse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A.T., Oglesby-Sherrouse, A.G. Spoils of war: iron at the crux of clinical and ecological fitness of Pseudomonas aeruginosa . Biometals 28, 433–443 (2015). https://doi.org/10.1007/s10534-015-9848-6

Download citation

Keywords

  • Pseudomonas aeruginosa
  • Iron
  • Heme
  • PQS