, Volume 28, Issue 3, pp 433–443 | Cite as

Spoils of war: iron at the crux of clinical and ecological fitness of Pseudomonas aeruginosa

  • Angela T. Nguyen
  • Amanda G. Oglesby-Sherrouse


Pseudomonas aeruginosa is a versatile environmental microorganism that also causes life-threatening opportunistic infections. At the root of this bacterium’s ability to survive in such diverse environments is its large suite of iron acquisition systems. More recently, studies have highlighted the ability of P. aeruginosa to compete with other organisms for this essential metallonutrient. This minireview provides an overview of the iron acquisition systems used by P. aeruginosa, with an emphasis on how these systems contribute to fitness in polymicrobial environments. We also provide an evolutionary perspective of how these systems were selected for in the native habitats of the Pseudomonads, while also highlighting factors that are unique to P. aeruginosa.


Pseudomonas aeruginosa Iron Heme PQS 



The authors would like to thank Dr. Angela Wilks, Dr. Sarah Michel, Geoffrey Heinzl, and Luke Brewer for helpful discussions of metals and metabolites during the preparation of this manuscript. Dr. Oglesby-Sherrouse’s Laboratory is supported by start-up support from the University of Maryland School of Pharmacy.


  1. Adler C, Corbalan NS, Seyedsayamdost MR, Pomares MF, de Cristobal RE, Clardy J, Kolter R, Vincent PA (2012) Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS ONE 7:e46754CrossRefPubMedCentralPubMedGoogle Scholar
  2. Albrecht-Gary A-M, Blanc S, Rochel N, Ocaktan AZ, Abdallah MA (1994) Bacterial iron transport: coordination properties of pyoverdin PaA, a peptidic siderophore of Pseudomonas aeruginosa. Inorg Chem 33:6391–6402CrossRefGoogle Scholar
  3. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237CrossRefPubMedGoogle Scholar
  4. Anzaldi LL, Skaar EP (2010) Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 78:4977–4989CrossRefPubMedCentralPubMedGoogle Scholar
  5. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339CrossRefPubMedGoogle Scholar
  6. Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GL, Albrecht-Gary AM (2012) Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans 41:2820–2834CrossRefPubMedGoogle Scholar
  7. Braud A, Hannauer M, Mislin GL, Schalk IJ (2009a) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:3517–3525CrossRefPubMedCentralPubMedGoogle Scholar
  8. Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009b) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091CrossRefPubMedGoogle Scholar
  9. Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329CrossRefPubMedGoogle Scholar
  10. Brickman TJ, Vanderpool CK, Armstrong SK (2006) Heme transport contributes to in vivo fitness of Bordetella pertussis during primary infection in mice. Infect Immun 74:1741–1744CrossRefPubMedCentralPubMedGoogle Scholar
  11. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo—transport of ferrous iron into bacteria. Biometals 19:143–157CrossRefPubMedGoogle Scholar
  12. Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611CrossRefPubMedGoogle Scholar
  13. Clarke PH (1982) The metabolic versatility of pseudomonads. Antonie Van Leeuwenhoek 48:105–130CrossRefPubMedGoogle Scholar
  14. Coleman JP, Hudson LL, McKnight SL, Farrow JM III, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255CrossRefPubMedCentralPubMedGoogle Scholar
  15. Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M, Boucher R, Schwab U, Gilligan P, Pesci EC (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215:41–46CrossRefPubMedGoogle Scholar
  16. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645CrossRefPubMedGoogle Scholar
  17. Cornelis P, Dingemans J (2013) Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 3:75CrossRefPubMedCentralPubMedGoogle Scholar
  18. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798CrossRefPubMedGoogle Scholar
  19. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6:e27317CrossRefPubMedCentralPubMedGoogle Scholar
  20. De Vos D, De Chial M, Cochez C, Jansen S, Tummler B, Meyer JM, Cornelis P (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388CrossRefPubMedGoogle Scholar
  21. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344CrossRefPubMedCentralPubMedGoogle Scholar
  22. Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96CrossRefPubMedGoogle Scholar
  23. Dowling DN, Ogara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant-disease. Trends Biotechnol 12:133–141CrossRefGoogle Scholar
  24. Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491CrossRefPubMedGoogle Scholar
  25. Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC, Doucet N, Rahme LG, Lepine F, Deziel E (2013) The end of an old hypothesis: the Pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol 20:1481–1491CrossRefPubMedGoogle Scholar
  26. Falagas ME, Bliziotis IA (2007) Pandrug-resistant gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29:630–636CrossRefPubMedGoogle Scholar
  27. Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13:965–978CrossRefPubMedCentralPubMedGoogle Scholar
  28. Friedman J, Lad L, Li H, Wilks A, Poulos TL (2004) Structural basis for novel delta-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa. Biochemistry 43:5239–5245CrossRefPubMedGoogle Scholar
  29. Furci LM, Lopes P, Eakanunkul S, Zhong S, MacKerell AD Jr, Wilks A (2007) Inhibition of the bacterial heme oxygenases from Pseudomonas aeruginosa and Neisseria meningitidis: novel antimicrobial targets. J Med Chem 50:3804–3813CrossRefPubMedGoogle Scholar
  30. Gisk B, Wiethaus J, Aras M, Frankenberg-Dinkel N (2012) Variable composition of heme oxygenases with different regiospecificities in Pseudomonas species. Arch Microbiol 194:597–606CrossRefPubMedGoogle Scholar
  31. Giske CG, Monnet DL, Cars O, Carmeli Y (2008) Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 52:813–821CrossRefPubMedCentralPubMedGoogle Scholar
  32. Greenwald J, Hoegy F, Nader M, Journet L, Mislin GL, Graumann PL, Schalk IJ (2007) Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. A role for ferrous iron. J Biol Chem 282:2987–2995CrossRefPubMedGoogle Scholar
  33. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027CrossRefPubMedGoogle Scholar
  34. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefPubMedGoogle Scholar
  35. Hagan EC, Mobley HL (2009) Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 71:79–91CrossRefPubMedCentralPubMedGoogle Scholar
  36. Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ (2012) The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–1708CrossRefPubMedGoogle Scholar
  37. Harrison F, Browning LE, Vos M, Buckling A (2006) Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 4:21CrossRefPubMedCentralPubMedGoogle Scholar
  38. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274CrossRefPubMedCentralPubMedGoogle Scholar
  39. Henderson DP, Payne SM (1994) Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun 62:5120–5125PubMedCentralPubMedGoogle Scholar
  40. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657CrossRefPubMedGoogle Scholar
  41. Hom K, Heinzl GA, Eakanunkul S, Lopes PE, Xue F, Mackerell AD Jr, Wilks A (2013) Small molecule antivirulents targeting the iron-regulated heme oxygenase (HemO) of P. aeruginosa. J Med Chem 56:2097–2109CrossRefPubMedCentralPubMedGoogle Scholar
  42. Hunter RC, Asfour F, Dingemans J, Osuna BL, Samad T, Malfroot A, Cornelis P, Newman DK (2013) Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. mBio 4(4):e00557–e005513CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–436CrossRefPubMedCentralPubMedGoogle Scholar
  44. Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW, Lamont IL (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 81(8):2697–2704Google Scholar
  45. Korgaonkar AK, Whiteley M (2011) Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 193:909–917CrossRefPubMedCentralPubMedGoogle Scholar
  46. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci USA 110:1059–1064CrossRefPubMedCentralPubMedGoogle Scholar
  47. Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606CrossRefPubMedGoogle Scholar
  48. Llamas MA, Imperi F, Visca P, Lamont IL (2014) Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 38:569–597CrossRefPubMedGoogle Scholar
  49. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222CrossRefPubMedCentralPubMedGoogle Scholar
  50. Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R (1992) 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30:615–623CrossRefPubMedGoogle Scholar
  51. Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K (2009) Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. Microbiology 155:305–315CrossRefPubMedGoogle Scholar
  52. Martinez JL (2014) Short-sighted evolution of bacterial opportunistic pathogens with an environmental origin. Front Microbiol 5:239PubMedCentralPubMedGoogle Scholar
  53. Marvig RL, Damkiaer S, Khademi SM, Markussen TM, Molin S, Jelsbak L (2014) Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 5(3):e00966–e009614CrossRefPubMedCentralPubMedGoogle Scholar
  54. Mashburn LM, Jett AM, Akins DR, Whiteley M (2005) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–566CrossRefPubMedCentralPubMedGoogle Scholar
  55. Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142CrossRefPubMedGoogle Scholar
  56. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdine is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523PubMedCentralPubMedGoogle Scholar
  57. Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143(Pt 1):35–43CrossRefPubMedGoogle Scholar
  58. Mirleau P, Delorme S, Philippot L, Meyer J, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44CrossRefPubMedGoogle Scholar
  59. Mirleau P, Philippot L, Corberand T, Lemanceau P (2001) Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Appl Environ Microbiol 67:2627–2635CrossRefPubMedCentralPubMedGoogle Scholar
  60. Moree WJ, Phelan VV, Wu CH, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci USA 109:13811–13816CrossRefPubMedCentralPubMedGoogle Scholar
  61. Morris CE, Monteil CL, Berge O (2013) The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol 51:85–104CrossRefPubMedGoogle Scholar
  62. Murphy TF (2008) The many faces of Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Clin Infect Dis 47:1534–1536CrossRefPubMedGoogle Scholar
  63. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M (2014) Mechanisms of synergy in polymicrobial infections. J Microbiol 52:188–199CrossRefPubMedGoogle Scholar
  64. Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron—a metal at the host–pathogen interface. Cell Microbiol 12:1691–1702CrossRefPubMedGoogle Scholar
  65. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726CrossRefPubMedGoogle Scholar
  66. Nguyen AT, O’Neill MJ, Watts AM, Robson CL, Lamont IL, Wilks A, Oglesby-Sherrouse AG (2014) Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 196(12):2265–2276CrossRefPubMedCentralPubMedGoogle Scholar
  67. NNIS (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485CrossRefGoogle Scholar
  68. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60CrossRefPubMedCentralPubMedGoogle Scholar
  69. O’Neill MJ, Wilks A (2013) The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. ACS Chem Biol 8:1794–1802CrossRefPubMedCentralPubMedGoogle Scholar
  70. Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has in Pseudomonas aeruginosa. Microbiology 146(Pt 1):185–198PubMedGoogle Scholar
  71. Oglesby AG, Farrow JM III, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, Vasil ML (2008) The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283:15558–15567CrossRefPubMedCentralPubMedGoogle Scholar
  72. Otto BR, Verweij-van Vught AM, MacLaren DM (1992) Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol 18:217–233CrossRefPubMedGoogle Scholar
  73. Perry RD, Fetherston JD (2011) Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbe Infect/Inst Pasteur 13:808–817CrossRefGoogle Scholar
  74. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234CrossRefPubMedCentralPubMedGoogle Scholar
  75. Price-Whelan A, Dietrich LE, Newman DK (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381CrossRefPubMedCentralPubMedGoogle Scholar
  76. Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I (2001) Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 183:6394–6403CrossRefPubMedCentralPubMedGoogle Scholar
  77. Rombel IT, Lamont IL (1992) DNA homology between siderophore genes from fluorescent pseudomonads. J Gen Microbiol 138:181–187CrossRefPubMedGoogle Scholar
  78. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252CrossRefPubMedGoogle Scholar
  79. Schalk IJ, Guillon L (2013a) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673CrossRefPubMedGoogle Scholar
  80. Schalk IJ, Guillon L (2013b) Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44:1267–1277CrossRefPubMedGoogle Scholar
  81. Schalk IJ, Mislin GL, Brillet K (2012) Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 69:37–66CrossRefPubMedGoogle Scholar
  82. Seviour T, Doyle LE, Lauw SJ, Hinks J, Rice SA, Nesatyy VJ, Webster RD, Kjelleberg S, Marsili E (2015) Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun 51(18):3789–3792Google Scholar
  83. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG (2008) Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 4:e1000184CrossRefPubMedCentralPubMedGoogle Scholar
  84. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680CrossRefPubMedGoogle Scholar
  85. Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res 9:1265–1277Google Scholar
  86. Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP, Whiteley M (2014) Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci USA 111:7819–7824CrossRefPubMedCentralPubMedGoogle Scholar
  87. Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2010) The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192:117–126CrossRefPubMedCentralPubMedGoogle Scholar
  88. Takase H, Nitanai H, Hoshino K, Otani T (2000a) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68:1834–1839CrossRefPubMedCentralPubMedGoogle Scholar
  89. Takase H, Nitanai H, Hoshino K, Otani T (2000b) Requirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection. Infect Immun 68:4498–4504CrossRefPubMedCentralPubMedGoogle Scholar
  90. Vasil ML (1986) Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology. J Pediatr 108:800–805CrossRefPubMedGoogle Scholar
  91. Vento S, Cainelli F, Temesgen Z (2008) Lung infections after cancer chemotherapy. Lancet Oncol 9:982–992CrossRefPubMedGoogle Scholar
  92. Visca P, Serino L, Orsi N (1992) Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdine. J Bacteriol 174:5727–5731PubMedCentralPubMedGoogle Scholar
  93. Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30CrossRefPubMedGoogle Scholar
  94. Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193:3606–3617CrossRefPubMedCentralPubMedGoogle Scholar
  95. Watrous J, Roach P, Heath B, Alexandrov T, Laskin J, Dorrestein PC (2013) Metabolic profiling directly from the Petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. Anal Chem 85:10385–10391CrossRefPubMedCentralPubMedGoogle Scholar
  96. Wegele R, Tasler R, Zeng Y, Rivera M, Frankenberg-Dinkel N (2004) The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J Biol Chem 279:45791–45802CrossRefPubMedGoogle Scholar
  97. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256CrossRefPubMedGoogle Scholar
  98. Xiong YQ, Vasil ML, Johnson Z, Ochsner UA, Bayer AS (2000) The oxygen- and iron-dependent sigma factor pvdS of Pseudomonas aeruginosa is an important virulence factor in experimental infective endocarditis. J Infect Dis 181:1020–1026CrossRefPubMedGoogle Scholar
  99. Yang L, Jelsbak L, Marvig RL et al (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 108:7481–7486CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Angela T. Nguyen
    • 1
  • Amanda G. Oglesby-Sherrouse
    • 1
    • 2
  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreUSA
  2. 2.Department of Microbiology and Immunology, School of MedicineUniversity of MarylandBaltimoreUSA

Personalised recommendations