Skip to main content

Advertisement

Log in

Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Legionella pneumophila is a waterborne pathogen that can cause Legionnaires’ disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 105 cells cm−2) than on PVC (2.8 × 105 cells cm−2) and PEX (1.7 × 105 cells cm−2). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 105 cells cm−2 for PNA-positive cells and 4.8 × 105 CFU cm−2 for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atlas RM (1999) Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol 1:283–293

    Article  CAS  PubMed  Google Scholar 

  • Azevedo NF, Vieira MJ, Keevil CW (2003) Development of peptide nucleic acid probes to detect Helicobacter pylori in diverse species potable water biofilms. In: McBain A, Allison C, Brading M, Rickard A, Verran J, Walker J (eds) Biofilm communities: order from chaos? Bioline, Cardiff, pp 231–239

    Google Scholar 

  • Bleichert P, Espírito Santo C, Hanczaruk M, Meyer H, Grass G (2014) Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. Biometals 27:1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Borkow G, Gabbay J (2009) Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278

    CAS  Google Scholar 

  • Buse HY, Lu J, Struewing IT, Ashbolt NJ (2014) Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. Int J Hyg Environ Health 217:219–225

    Article  CAS  PubMed  Google Scholar 

  • Casey AL, Adams D, Karpanen TJ et al (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74:72–77

    Article  CAS  PubMed  Google Scholar 

  • Declerck P (2010) Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol 12:557–566

    Article  CAS  PubMed  Google Scholar 

  • Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW (2008) Persistence of Helicobacter pylori in heterotrophic drinking water biofilms. Appl Environ Microbiol 74:5898–5904

    Article  PubMed Central  PubMed  Google Scholar 

  • Gião M, Wilks S, Azevedo N, Vieira M, Keevil C (2009a) Validation of SYTO 9/propidium iodide uptake for rapid detection of viable but noncultivable Legionella pneumophila. Microb Ecol 58:56–62

    Article  PubMed  Google Scholar 

  • Gião MS, Wilks S, Azevedo NF, Vieira MJ, Keevil CW (2009b) Incorporation of natural uncultivable Legionella pneumophila into potable water biofilms provides a protective niche against chlorination stress. Biofouling 25:345–351

    Article  PubMed  Google Scholar 

  • Gião MS, Wilks SA, Azevedo NF, Vieira MJ, Keevil CW (2009c) Comparison between standard culture and peptide nucleic acid 16S rRNA hybridization quantification to study the influence of physico-chemical parameters on Legionella pneumophila survival in drinking water biofilms. Biofouling 25:335–343

    Article  PubMed  Google Scholar 

  • Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW (2011) Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol 11:57

    Article  PubMed Central  PubMed  Google Scholar 

  • Gould S, Fielder M, Kelly A, Morgan M, Kenny J, Naughton D (2009) The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann Microbiol 59:151–156

    Article  CAS  Google Scholar 

  • Guerrieri E, Bondi M, Sabia C, de Niederhäusern S, Borella P, Messi P (2008) Effect of bacterial interference on biofilm development by Legionella pneumophila. Curr Microbiol 57:532–536

    Article  CAS  PubMed  Google Scholar 

  • Hussong D, Colwell RR, O’Brien M, Weiss E, Pearson AD, Weiner RM, Burge WD (1987) Viable Legionella pneumophila not detectable by culture on agar media. Nat Biotechnol 5:947–950

    Article  Google Scholar 

  • James BW, Mauchline WS, Dennis PJ, Keevil CW, Wait R (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low nutrient environments. Appl Environ Microbiol 65:822–827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keevil CW (2001) Continuous culture models to study pathogens in biofilms. Method Enzymol 337:104–122

    Article  CAS  Google Scholar 

  • Keevil CW (2002) Pathogens in environmental biofilms. In: Bitton G (ed) The encyclopedia of environmental microbiology. Wiley, New York, pp 2339–2356

    Google Scholar 

  • Keevil CW (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47:105–116

    CAS  PubMed  Google Scholar 

  • Landeen LK, Yahya MT, Gerba CP (1989) Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila. Appl Environ Microbiol 55:3045–3050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lehtola MJ, Torvinen E, Miettinen LT, Keevil CW (2006) Fluorescence in situ hybridization using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable water biofilms. Appl Environ Microbiol 72:848–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin YSE, Vidic RD, Stout JE, Yu VL (2002) Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling Legionella pneumophila. Appl Environ Microbiol 68:2711–2715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu H, Clarke M (2005) Dynamic properties of Legionella containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7:995–1007

    Article  CAS  PubMed  Google Scholar 

  • McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR (1977) Legionnaires’ disease—isolation of a bacterium and demonstration of its role in other respiratory disease. New Engl J Med 297:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Moritz MM, Flemming H-C, Wingender J (2010) Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Health 213:190–197

    Article  CAS  PubMed  Google Scholar 

  • Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable water system. Microbiol 147:3121–3126

    CAS  Google Scholar 

  • Nieto JJ, Fernández-Castillo R, Márquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noyce JO, Michels H, Keevil CW (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl Environ Microbiol 72:4239–4244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasculle W (2000) Update on Legionella. Clin Microbiol Newsl 22:97–101

    Article  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994a) Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 60:1842–1851

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994b) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60:1585–1592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salgado CDMD, Sepkowitz KAMD, John JFMD et al (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34:479–486

    Article  PubMed  Google Scholar 

  • Schmidt M, Attaway H, Terzieva S et al (2012a) Characterization and control of the microbial community affiliated with copper or aluminum heat exchangers of HVAC systems. Curr Microbiol 65:141–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt MG, Attaway HH, Sharpe PA et al (2012b) Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J Clin Microbiol 50:2217–2223

    Article  PubMed Central  PubMed  Google Scholar 

  • Surman SB, Morton LHG, Keevil CW (1994) The dependence of Legionella pneumophila on other aquatic bacteria for survival on R2A medium. Int Biodeterior Biodegrad 13:223–236

    Article  Google Scholar 

  • Surman S, Morton G, Keevil B, Fitzgeorge R (2002) Legionella pneumophila proliferation is not dependent on intracellular replication. In: Marre R et al (eds) Legionella. ASM Press, Washingtom DC, pp 86–89

    Google Scholar 

  • Türetgen I, Cotuk A (2007) Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system. Environ Monit Assess 125:271–279

    Article  PubMed  Google Scholar 

  • van der Kooij D, Veenendaal HR, Scheffer WJH (2005) Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Res 39:2789–2798

    Article  PubMed  Google Scholar 

  • Wadowsky RM, Yee RB (1983) Satellite growth of Legionella pneumophila with an environmental isolate of Flavobacterium breve. Appl Environ Microbiol 46:1447–1449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walker JT, Sonesson A, Keevil CW, White DC (1993) Detection of Legionella pneumophila in biofilms containing a complex microbial consortium by gas chromatography-mass spectrometry analysis of genus-specific hydroxy fatty acids. FEMS Microbiol Lett 113:139–144

    Article  CAS  PubMed  Google Scholar 

  • Warnes SL, Keevil CW (2013) Inactivation of norovirus on dry copper alloy surfaces. PLoS One 8:e75017. doi:10.1371/journal.pone.0075017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warnes SL, Caves V, Keevil CW (2012) Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for gram-positive bacteria. Environ Microbiol 14:1730–1743

    Article  CAS  PubMed  Google Scholar 

  • Warnes SL, Summersgill EN, Keevil CW (2014) Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Appl Environ Microbiol 81(3):1085–1091

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilks SA, Keevil CW (2006) Targeting species-specific low-affinity 16S rRNA binding sites by using peptide nucleic acids for detection of legionellae in biofilms. Appl Environ Microbiol 72:5453–5462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Copper Development Association, New York, NY, and the International Copper Association, New York, NY. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gião.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gião, M.S., Wilks, S.A. & Keevil, C.W. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water. Biometals 28, 329–339 (2015). https://doi.org/10.1007/s10534-015-9835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9835-y

Keywords

Navigation