, Volume 28, Issue 3, pp 461–472 | Cite as

The fate of siderophores: antagonistic environmental interactions in exudate-mediated micronutrient uptake

  • James M. Harrington
  • Owen W. Duckworth
  • Kurt Haselwandter


Organisms acquire metals from the environment by releasing small molecules that solubilize and promote their specific uptake. The best known example of this nutrient uptake strategy is the exudation of siderophores, which are a structurally-diverse class of molecules that are traditionally viewed as being integral to iron uptake. Siderophores have been proposed to act through a variety of processes, but their effectiveness can be mitigated by a variety of chemical and physical processes of both biotic and abiotic origin. Processes that occur at the surface of minerals can degrade or sequester siderophores, preventing them from fulfilling their function of returning metals to the organism. In addition, biotic processes including enzymatic degradation of the siderophore and piracy of the metal or of the siderophore complex also disrupt iron uptake. Some organisms have adapted their nutrient acquisition strategies to address these potential pitfalls, producing multiple siderophores and other exudates that take advantage of varying kinetic and thermodynamic factors to allow the continued uptake of metals. A complete understanding of the factors that contribute to metal uptake in nature will require a concerted effort to study processes identified in laboratory systems in the context of more complicated environmental systems.


Siderophores Biogeochemistry Iron acquisition Rhizosphere Micronutrient uptake 



OWD is grateful for support received from the National Science Foundation Geobiology and Low-Temperature Geochemistry Program (EAR-0921313).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abergel RJ, Wilson MK, Arceneaux JEL, Hoette TM, Strong RK, Byers BR, Raymond KN (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci USA 103:18499–18503PubMedCentralPubMedGoogle Scholar
  2. Ahmed E, Holmstrom SJM (2014) The effect of soil horizon and mineral type on the distribution of siderophores in soil. Geochim Cosmochim Acta 131:184–195Google Scholar
  3. Akafia MM, Harrington JM, Bargar JR, Duckworth OW (2014) Metal oxyhydroxide dissolution as promoted by structurally diverse siderophores and oxalate. Geochimica et Cosmochimica Acta 141:258–269. doi: 10.1016/j.gca.2014.06.024 Google Scholar
  4. Albrecht-Gary AM, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. Met Ions Biol Syst 35:239–327PubMedGoogle Scholar
  5. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc Natl Acad Sci 106:17071–17076. doi: 10.1073/pnas.0905512106 PubMedCentralPubMedGoogle Scholar
  6. Baig BH, Wachsmuth IK, Morris GK (1986) Utilization of exogenous siderophores by Campylobacter species. J Clin Microbiol 23:431–433PubMedCentralPubMedGoogle Scholar
  7. Barbeau K, Rue EL, Bruland KW, Butler A (2001a) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413PubMedGoogle Scholar
  8. Barbeau K, Zhang G, Live DH, Butler A (2001b) Petrobactin, a Photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379. doi: 10.1021/ja0119088 Google Scholar
  9. Barbeau K, Rue EL, Trick CG, Bruland KW, Butler A (2003) Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria, based on characteristic Fe(III) binding groups. Limnol Oceanogr 48:1069Google Scholar
  10. Borer P, Kraemer SM, Sulzberger B, Hug SJ, Kretzschmar R (2009) Photodissolution of lepidocrocite (gamma-FeOOH) in the presence of desferrioxamine B and aerobactin. Geochim Cosmochim Acta 73:4673–4687Google Scholar
  11. Buss HL, Lüttge A, Brantley SL (2007) Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chem Geol 240:326–342Google Scholar
  12. Butler A, Martin JD (2005) The marine biogeochemistry of iron. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in biological systems, vol 44., pp 21–46Google Scholar
  13. Butler A, Theisen RM (2010) Iron(III)-siderophore coordination chemistry: reactivity of marine siderophores. Coord Chem Rev 254:288–296PubMedCentralPubMedGoogle Scholar
  14. Cervini-Silva J, Sposito G (2002) Steady-state dissolution kinetics of aluminum-goethite in the presence of desferrioxamine-B and oxalate ligands. Environ Sci Technol 36:337–342PubMedGoogle Scholar
  15. Cheah SF, Kraemer SM, Cervini-Silva J, Sposito G (2003) Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: Implications for the microbial acquisition of iron. Chem Geol 198:63–75Google Scholar
  16. Chuang CY et al (2013) Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Mar Chem 157:131–143. doi: 10.1016/j.marchem.2013.10.002 Google Scholar
  17. Cocozza C, Tsao CCG, Cheah SF, Kraemer SM, Raymond KN, Miano TM, Sposito G (2002) Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores. Geochim Cosmochim Acta 66:431–438Google Scholar
  18. Correnti C, Strong RK (2012) Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J Biol Chem 287:13524–13531PubMedCentralPubMedGoogle Scholar
  19. Crichton R (2009) Iron Metabolism: From Molecular Mechanisms to Clinical Consequences, 3rd edn. Wiley, New YorkGoogle Scholar
  20. Crowley D (2000) Function of siderophores in the plant rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rhizosphere. Dekker, New York, pp 223–261Google Scholar
  21. Crowley D (2007) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198Google Scholar
  22. Crumbliss AL, Harrington JM (2009) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. In: van Eldik R (ed) Advances in inorganic chemistry, vol 61., pp 179–250Google Scholar
  23. Cullen JT, Bergquist BA, Moffett JW (2006) Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean. Mar Chem 98:295–303. doi: 10.1016/j.marchem.2005.10.007 Google Scholar
  24. Dehner CA, Awaya JD, Maurice PA, Dubois JL (2010) Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium pseudomonas mendocina. Appl Environ Microbiol 76:2041–2048PubMedCentralPubMedGoogle Scholar
  25. Dhungana S, Crumbliss AL (2005) Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiol J 22:87–98Google Scholar
  26. Dhungana S, White PS, Crumbliss AL (2003) Crystal and molecular structures of Ionophore–Siderophore host-guest supramolecular assemblies relevant to molecular recognition. J Am Chem Soc 125:14760–14767PubMedGoogle Scholar
  27. Dhungana S, Anthony CR, Hersman LE (2007) Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products. Geochim Cosmochim Acta 71:5651–5660. doi: 10.1016/j.gca.2007.07.022 Google Scholar
  28. Duckworth OW, Sposito G (2005a) Siderophore-manganese(III) interactions I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environ Sci Technol 39:6037–6044PubMedGoogle Scholar
  29. Duckworth OW, Sposito G (2005b) Siderophore-manganese(III) interactions II. Manganite dissolution promoted by desferrioxamine B. Environ Sci Technol 39:6045–6051PubMedGoogle Scholar
  30. Duckworth OW, Bargar JR, Sposito G (2008) Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides. Geochim Cosmochim Acta 72:3371–3380Google Scholar
  31. Duckworth OW, Bargar JR, Sposito G (2009a) Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Biometals 22:605–613PubMedGoogle Scholar
  32. Duckworth OW, Holmstrom SJM, Pena J, Sposito G (2009b) Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chem Geol 260:149–158Google Scholar
  33. Duckworth OW, Jarzecki AA, Bargar JR, Oyerinde O, Spiro TG, Sposito G (2009c) An exceptionally stable cobalt(III)-desferrioxamine B complex. Marine Chem 113:114–122Google Scholar
  34. Duckworth OW, Akafia MM, Andrews MY, Bargar JR (2014) Siderophore-promoted dissolution of chromium from hydroxide minerals. Environ Sci 16:1348–1359Google Scholar
  35. Essén SA, Bylund D, Holmstrom SJM, Moberg M, Lundstrom US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19:269–282. doi: 10.1007/s10534-005-8418-8 PubMedGoogle Scholar
  36. Expert D (1999) Withholding and exchanging iron: Interactions between Erwinia spp. and their plant hosts. Annu Rev Phytopathol 37:307–334PubMedGoogle Scholar
  37. Farkas E, Enyedy EA, Zekany L, Deak G (2001) Interaction between iron(II) and hydroxamic acids: oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J Inorg Biochem 83:107–114PubMedGoogle Scholar
  38. Farkas E, Enyedy EA, Fabian I (2003) New insight into the oxidation of Fe(II) by desferrioxamine B (DFB): spectrophotometric and capillary electrophoresis (CE) study. Inorg Chem Commun 6:131–134 (Pii S1387-7003(02)00703-7)Google Scholar
  39. Franke J, Ishida K, Hertweck C (2014) Evolution of siderophore pathways in human pathogenic bacteria. J Am Chem Soc 136:5599–5602PubMedGoogle Scholar
  40. Garibaldi JA, Neilands JB (1956) Formation of iron-binding compounds by micro-organisms [5]. Nature 177:526–527PubMedGoogle Scholar
  41. Gledhill M, Buck KN (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol 3 doi: 10.3389/fmicb.2012.00069
  42. Gustafsson JP, Persson I, Kleja DB, Van Schaik JWJ (2007) Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ Sci Technol 41:1232–1237. doi: 10.1021/Es0615730 PubMedGoogle Scholar
  43. Harrington JM, Bargar JM, Jarzecki AA, Sombers LA, Roberts JG, Duckworth OW (2012) Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. Biometals 25:393–412PubMedGoogle Scholar
  44. Harrison F, Paul J, Massey RC, Buckling A (2008) Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J 2:49–55PubMedGoogle Scholar
  45. Haselwandter K, Winkelmann G (2002) Ferricrocin—an ectomycorrhizal siderophore of Cenococcum geophilum. Biometals 15:73–77PubMedGoogle Scholar
  46. Haselwandter K, Winkelmann G (2009) Siderophores of mycorrhizal fungi: Detection, isolation and identification. In: Varma A, Kharkwal AC (eds) Symbiotic fungi. Soil Biology series, vol 18. Springer, Berlin, pp 393–402Google Scholar
  47. Haselwandter K et al (2006) Basidiochrome—a novel siderophore of the orchidaceous mycorrhizal fungi Ceratobasidium and Rhizoctonia spp. Biometals 19:335–343PubMedGoogle Scholar
  48. Haselwandter K, Häninger G, Ganzera M (2011) Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus. Biometals 24:153–157PubMedGoogle Scholar
  49. Haselwandter K, Häninger G, Ganzera M, Haas H, Nicholson G, Winkelmann G (2013) Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. Biometals 26:969–979PubMedGoogle Scholar
  50. Hersman L, Maurice P, Sposito G (1996) Iron acquisition from hydrous Fe(III) -oxides by an aerobic Pseudomonas sp. Chem Geol 132:25–31Google Scholar
  51. Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings BL, Williams JH (1952) Coprogen, a new growth factor for coprophilic fungi [1]. J Am Chem Soc 74:1362Google Scholar
  52. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Natural Product Reports 27:637–657PubMedGoogle Scholar
  53. Higashi RM, Fan TWM, Lane AN (1998) Association of desferrioxamine with humic substances and their interaction with cadmium(II) as studied by pyrolysis gas chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. Analyst 123:911–918Google Scholar
  54. Hoffland E et al (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264Google Scholar
  55. Holmen BA, Casey WH (1996) Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite. Geochim Cosmochim Acta 60:4403–4416Google Scholar
  56. Holmen BA, Tejedor-Tejedor I, Casey WH (1997) Hydroxamate complexes in solution and at the goethite-water interface: a cylindrical internal reflection Fourier transform infrared spectroscopy study. Langmuir 13:2197–2206Google Scholar
  57. Holmström SJM, Lundström US, Finlay RD, Van Hees PAW (2004) Siderophores in forest soil solution. Biogeochemistry 71:247–258Google Scholar
  58. Homann VV, Sandy M, Tincu JA, Templeton AS, Tebo BM, Butler A (2009) Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium halomonas LOB-5. J Nat Prod 72:884–888PubMedCentralPubMedGoogle Scholar
  59. Hunter KA, Boyd PW (2007) Iron-binding ligands and their role in the ocean biochemistry of iron. Environ Chem 4:221–232Google Scholar
  60. Johnson L (2008) Iron and siderophores in fungal-host interactions. Mycol Res 112:170–183PubMedGoogle Scholar
  61. Kim D, Duckworth OW, Strathmann TJ (2009) Hydroxamate siderophore-promoted reactions between iron(II) and nitroaromatic groundwater contaminants. Geochim Cosmochim Acta 73:1297–1311Google Scholar
  62. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320Google Scholar
  63. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18Google Scholar
  64. Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WDC (2014) Metallophores and trace metal biogeochemistry. Aquat Geochem, 1–37Google Scholar
  65. Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Multiple roles of siderophores in free living nitrogen fixing bacteria. Biometals 22:573–581. doi: 10.1007/s10534-009-9222-7 PubMedGoogle Scholar
  66. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta—Biomembr 1778:1781–1804Google Scholar
  67. Kuhn KM, Dehner CA, Dubois JL, Maurice PA (2012) Iron acquisition from natural organic matter by an aerobic pseudomonas mendocina bacterium: siderophores and cellular iron status. Geomicrobiol J 29:780–791. doi: 10.1080/01490451.2011.619639 Google Scholar
  68. Kuhn KM, Maurice PA, Neubauer E, Hofmann T, Von Der Kammer F (2014) Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. Environ Sci Technol 48:1015–1022PubMedGoogle Scholar
  69. Leong SA, Winkelmann G (1998) Molecular biology of iron transport in fungi. Met Ions Biol Syst 35:147–186PubMedGoogle Scholar
  70. Liermann LJ, Kalinowski BE, Brantley SL, Ferry JG (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta 64:587–602Google Scholar
  71. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618PubMedGoogle Scholar
  72. Loring JS, Simanova AA, Persson P (2008) Highly mobile iron pool from a dissolution-readsorption process. Langmuir 24:7054–7057. doi: 10.1021/la800785u PubMedGoogle Scholar
  73. Martin ST (2005) Precipitation and dissolution of iron and manganese oxides. In: Grassian VH (ed) Environmental catalysis. Marcel-Dekker, CRC Press, Boca Raton, pp 61–81Google Scholar
  74. Maurice P, Haack E, Mishra B (2009) Siderophore sorption to clays. Biometals 22:649–658. doi: 10.1007/s10534-009-9242-3 PubMedGoogle Scholar
  75. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451PubMedCentralPubMedGoogle Scholar
  76. Mishra B, Haack EA, Maurice PA, Bunker BA (2010) A spectroscopic study of the effects of a microbial siderophore on Pb adsorption to kaolinite. Chem Geol 275:199–207. doi: 10.1016/j.chemgeo.2010.05.009 Google Scholar
  77. Morris AJ, Hesterberg DL (2012) Iron(III) coordination and phosphate sorption in peat reacted with ferric or ferrous iron. Soil Sci Soc Am J 76:101–109. doi: 10.2136/sssaj2011.0097 Google Scholar
  78. Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312PubMedCentralPubMedGoogle Scholar
  79. Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Dekker, New York, pp 1–33Google Scholar
  80. Neilands JB (1952) A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena). J Am Chem Soc 74:4846–4847Google Scholar
  81. Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755Google Scholar
  82. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853PubMedCentralPubMedGoogle Scholar
  83. Pierwola A, Krupinski T, Zalupski P, Chiarelli M, Castignetti D (2004) Degradation pathway and generation of monohydroxamic acids from the trihydroxamate siderophore deferrioxamine B. Appl Environ Microbiol 70:831–836PubMedCentralPubMedGoogle Scholar
  84. Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834Google Scholar
  85. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941PubMedGoogle Scholar
  86. Reichard PU, Kretzschmar R, Kraemer SM (2007a) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650Google Scholar
  87. Reichard PU, Kretzschmar R, Kraemer SM (2007b) Rate laws of steady-state and non-steady-state ligand-controlled dissolution of goethite. Colloids and Surfaces a-Physicochemical and Engineering Aspects 306:22–28. doi: 10.1016/j.colsurfa.2007.03.001 Google Scholar
  88. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: Structures, functions and applications. Mycol Res 106:1123–1142Google Scholar
  89. Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron Dynamics in the Rhizosphere: Consequences for Plant Health and Nutrition. In: Sparks DL (ed) Advances in Agronomy, vol 99, 1st edn., Briat JFAcademic Press, Oxford, pp 183–225Google Scholar
  90. Romheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in gramineous species—an ecological approach. Plant Soil 130:127–134Google Scholar
  91. Rosconi F et al (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927PubMedGoogle Scholar
  92. Saal LB, Duckworth OW (2010) Synergistic dissolution of manganese oxides as promoted by siderophores and small organic acids. Soil Sci Soc Am J 74:2021–2031Google Scholar
  93. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x PubMedGoogle Scholar
  94. Schenkeveld WDC, Oburger E, Gruber B, Schindlegger Y, Hann S, Puschenreiter M, Kraemer SM (2014) Metal mobilization from soils by phytosiderophores - experiment and equilibrium modeling. Plant Soil 383:59–71. doi: 10.1007/s11104-014-2128-3 PubMedCentralPubMedGoogle Scholar
  95. Schrettl M et al (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200:1213–1219PubMedCentralPubMedGoogle Scholar
  96. Sia AK, Allred BE, Raymond KN (2013) Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 17:150–157PubMedCentralPubMedGoogle Scholar
  97. Siebner-Freibach H, Hadar Y, Chen Y (2004) Interaction of iron chelating agents with clay minerals. Soil Sci Soc Am J 68:470–480Google Scholar
  98. Siebner-Freibach H, Hadar Y, Yariv S, Lapides I, Chen Y (2006) Thermospectroscopic study of the adsorption mechanism of the hydroxamic siderophore ferrioxamine B by calcium montmorillonite. J Agric Food Chem 54:1399–1408PubMedGoogle Scholar
  99. Simanova AA, Persson P, Loring JS (2010) Hydrolysis of desferrioxamine-B at the surface of goethite in the dark at pH 6. Geochim Cosmochim Acta 74:A963Google Scholar
  100. Solinas V (1994) Cation effects on adsorption of desferrioxamine-B (DFOB) by humic acid. In: Sensei N, Miano TM (eds) Humic substances in the global environment and implications on human health. Elsevier, Amsterdam, pp 1183–1188Google Scholar
  101. Stintzi A, Barnes C, Xu J, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci USA 97:10691–10696PubMedCentralPubMedGoogle Scholar
  102. Stumm W (1997) Reactivity at the mineral-water interface: dissolution and inhibition. Coll Surf A 120:143–166Google Scholar
  103. Sutton R, Sposito G (2005) Molecular Structure in Soil Humic Substances: The New View. Environ Sci Technol 39:9009–9015. doi: 10.1021/es050778q PubMedGoogle Scholar
  104. Thieme J, Kilcoyne D, Tyliszczak T, Haselwandter K (2013) Spatially resolved NEXAFS spectroscopy of siderophores in biological matrices. Journal of Physics: Conference Series 463Google Scholar
  105. Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim Cosmochim Acta 66:3211–3224 (S0016-7037(02)00930-4)Google Scholar
  106. Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 86:628–644PubMedCentralPubMedGoogle Scholar
  107. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int J Med Microbiol 296:513–520PubMedGoogle Scholar
  108. Villavicencio M, Neilands JB (1965) An inducible ferrichrome A-degrading peptidase from pseudomonas FC-1. Biochemistry 4:1092–1097PubMedGoogle Scholar
  109. Von Wiren N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). Plant Physiol 124:1149–1157Google Scholar
  110. Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63Google Scholar
  111. Vraspir JM, Holt PD, Butler A (2011) Identification of new members within suites of amphiphilic marine siderophores. Biometals 24:85–92PubMedCentralPubMedGoogle Scholar
  112. Warren RA, Neilands JB (1964) Microbial degradation of the ferrichrome compounds. J Gen Microbiol 35:459–470PubMedGoogle Scholar
  113. Warren RA, Neilands JB (1965) Mechanism of microbial catabolism of ferrichrome A. J Biol Chem 240:2055–2058PubMedGoogle Scholar
  114. Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696PubMedGoogle Scholar
  115. Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392PubMedGoogle Scholar
  116. Winkelmann G, Busch B, Hartmann A, Kirchhof G, Süßmuth R, Jung G (1999) Degradation of desferrioxamines by Azospirillum irakense: assignment of metabolites by HPLC/electrospray mass spectrometry. Biometals 12:255–264PubMedGoogle Scholar
  117. Xu C et al (2008) Colloidal cutin-like substances cross-linked to siderophore decomposition products mobilizing plutonium from contaminated soils. Environ Sci Technol 42:8211–8217PubMedGoogle Scholar
  118. Zaya N, Roginsky A, Williams J, Castignetti D (1998) Evidence that a deferrioxamine B degrading enzyme is a serine protease. Can J Microbiol 44:521–527PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • James M. Harrington
    • 1
  • Owen W. Duckworth
    • 2
  • Kurt Haselwandter
    • 3
  1. 1.Trace Inorganics Department, Technologies for Industry and the EnvironmentRTI InternationalDurhamUSA
  2. 2.Department of Soil ScienceNorth Carolina State UniversityRaleighUSA
  3. 3.Department of MicrobiologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations