Advertisement

BioMetals

, Volume 28, Issue 1, pp 219–228 | Cite as

The induction of cell death by phosphine silver(I) thiocyanate complexes in SNO-esophageal cancer cells

  • Zelinda Human
  • Appollinaire Munyaneza
  • Bernard Omondi
  • Natasha M. Sanabria
  • Reinout Meijboom
  • Marianne J. Cronjé
Article

Abstract

Esophageal cancer is one of the least studied cancers and is found to be prominent in black South African males. It is mainly diagnosed in the late stages, and patients tend to have a low 5-year survival rate of only 10 %. Silver is generally used as an antimicrobial agent, with limited reports on anticancer studies. In this study, dimeric silver(I) thiocyanate complexes were used containing a variation of 4-substitued triphenylphosphines, including [AgSCN(PPh3)2]2 (1), [AgSCN{P(4-MeC6H4)3}2]2 (2), [AgSCN{P(4-FC6H4)3}2]2 (3) and [AgSCN{P(4-ClC6H4)3}2]2 (4). All four complexes, with their respective phosphine ligands, PPh3 (L1), P(4-MeC6H4)3 (L2), P(4-FC6H4)3 (L3) and P(4-ClC6H4)3 (L4), were subjected to in vitro toxicity studies in SNO-esophageal cancer cells, using an alamarBlue® assay. Morphological changes, including blebbing and apoptotic body formation, were observed. Phosphatidylserine externalization, a marker of apoptosis, was quantified by flow cytometry. The phosphine ligands L1L4, on their own, had minimal effect on the malignant while complexes 14 resulted in significant cell death. A 10× decreased concentration of these complexes had similar effects than cisplatin, used as the positive control. These complexes show promise as anticancer agents.

Keywords

Silver(I) thiocyanate complexes Phosphines Anticancer Flow cytometry Apoptosis SNO-esophageal cancer 

Notes

Acknowledgments

The authors gratefully acknowledge financial assistance from the University Research Council of the University of Johannesburg, SASOL, TESP, CANSA. This work is based on the research supported in part by the National Research Foundation of South Africa (Grant specific unique reference number (UID) 85386). The University of Pretoria is thanked for the gift of SNO-esophageal cancer cells.

Supplementary material

10534_2014_9817_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)

References

  1. Banti CN, Kyros L, Geromichalos GD, Kourkoumelis N, Kubicki M, Hadjikakou SK (2014) A novel silver iodide metalo-drug: experimental and computational modelling assessment of its interaction with intracellular DNA, lipoxygenase and glutathione. Eur J Med Chem 77:388–399PubMedCrossRefGoogle Scholar
  2. Bayir H, Kagan VE (2008) Bench-to-bedside review: mitochondrial injury, oxidative stress and apoptosis-there is nothing more practical than a good theory. Crit Care 12:206. doi: 10.1186/cc6779 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Berners-Price SJ, Sadler PJ (1988) Phosphine and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity. Struct Bond 70:27–102CrossRefGoogle Scholar
  4. Berners-Price SJ, Collier DC, Sadler PJ, Sue RE, Wilkie D (1994) Silver diphosphine complexes as antimitochondrial agents. Met Based Drugs 1(5–6):523PubMedCentralPubMedCrossRefGoogle Scholar
  5. Berners-Price SJ, Collier DC, Mazid MA, Sadler PJ, Sue RE, Wilkie D (1995) [Ag(I)(Et2PCH2CH2PPh2)2]NO3: an antimitochondrial silver complex. Met Based Drugs 2(2):111–122PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bold RJ, Termuhlen PM, McConkey DJ (1997) Apoptosis, cancer and cancer therapy. Surg Oncol 6:133–142PubMedCrossRefGoogle Scholar
  7. Caruso F, Villa R, Rossi M, Pettinari C, Paduano F, Pennati M, Daidone MG, Zaffaroni N (2007) Mitochondria are primary targets in apoptosis induced by the mixed phosphine gold species chlorotriphenylphosphine-1, 3-bis(diphenylphosphino)propanegold(I) in melanoma cell lines. Biochem Pharmacol 73:773–781PubMedCrossRefGoogle Scholar
  8. Chabner BA, Roberts TG Jr (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72PubMedCrossRefGoogle Scholar
  9. Devesa SS, Blot WJ, Fraumeni JF (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053PubMedCrossRefGoogle Scholar
  10. Dlamini Z, Bhoola K (2005) Esophageal cancer in African blacks of Kwazulu Natal, South Africa: an epidemiological brief. Ethnic Dis 15:786–789Google Scholar
  11. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fischer U, Schulze-Osthoff K (2005) Apoptosis-based therapies and drug targets. Cell Death Differ 12:942–961PubMedCrossRefGoogle Scholar
  13. Garcia M, Jemal A, Ward EM, Center MM, Hao Y, Siegel RL, Thun MJ (2007) Global cancer facts & figures 2007. American Cancer Society, AtlantaGoogle Scholar
  14. Goitia H, Nieto Y, Villacampa MD, Kasper C, Laguna A, Gimeno MC (2013) Antitumoral gold and silver complexes with ferrocenyl-amide phosphines. Organometallics. 32:6069–6078. doi.org/ 10.1021/om400633z
  15. Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37:605–617PubMedCrossRefGoogle Scholar
  16. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729PubMedCrossRefGoogle Scholar
  17. Jaroszeski MJ, Heller R (1998) Flow cytometry protocols. Humana Press Inc, New JerseyGoogle Scholar
  18. Jaskiewicz K, Marasas WFO, Van der Walt FE (1987) Oesophageal and other main cancer patterns in four districts of the Transkei, 1981–1984. S Afr Med J 72:27–30PubMedGoogle Scholar
  19. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249PubMedCrossRefGoogle Scholar
  20. Kelland LR, Mistry P, Abel G, Loh SY, O’Neill CF, Murrer BA, Harrap KR (1992) Mechanism-related circumvention of acquired cis-diamminedichloroplatinum(II) resistance using two pairs of human ovarian carcinoma cell lines by ammine/amine platinum(IV) dicarboxylates. Cancer Res 52:3857–3864PubMedGoogle Scholar
  21. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Brit J Cancer 26:239–257PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kriel FH, Coates J (2012) Synthesis and antitumour activity of gold(I) and silver(I) complexes of hydrazine-bridged diphosphine ligands. S Afr J Chem 65:271–279Google Scholar
  23. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of nomenclature committee on cell death 2009. Cell Death Differ 16:3–11PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kyros L, Kourkoumelis N, Kubicki M, Male L, Hursthouse MB, Verginadis II, Gouma E, Karkabounas S, Charalabopoulos K, Hadjikakou SK (2010) Structural properties, cytotoxicity, and anti-inflammatory activity of Ag(I) complexes with tris(p-tolyl)phosphine and 5-chloro-2-mercaptobenzothiazole. Bioinorg Chem Appl. doi: 10.1155/2010/386860 PubMedCentralPubMedGoogle Scholar
  25. Lee KB, Wang D, Lippard SJ, Sharp PA (2002) Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad of Sci USA 99:4239–4244CrossRefGoogle Scholar
  26. Liu JJ, Galettis P, Farr A, Maharaj L, Samarasinha H, McGechan AC, Baguley BC, Bowen RJ, Berners-Price S, McKeage MJ (2008) In vitro antitumour and hepatotoxicity profiles of Au(I) and Ag(I) bidentate pyridyl phosphine complexes and relationships to cellular uptake. J Inor Biochem 102:303–310CrossRefGoogle Scholar
  27. McKeage MJ, Papathanasiou P, Salem G, Sjaarda A, Swiegers GF, Waring P, Wild SB (1998) Antitumor activity of gold(I), silver(I) and copper(I) complexes containing chiral tertiary phosphines. Met Based Drugs 5(4):217–223PubMedCentralPubMedCrossRefGoogle Scholar
  28. McKeage MJ, Berners-Price SJ, Galettis P, Bowen RJ (2000) Role of lipophilicity in determining cellular uptake and antitumor activity of gold phosphine complexes. Cancer Chemoth Pharm 46:343–350CrossRefGoogle Scholar
  29. Meijboom R, Bowen RJ, Berners-Price SJ (2009) Coordination complexes of silver(I) with tertiary phosphine and related ligands. Coord Chem Rev 253:325–342CrossRefGoogle Scholar
  30. Neuner G, Patel A, Suntharalingam M (2009) Chemoradiotherapy for esophageal cancer. Gastrointest Cancer Res 3:57–65PubMedCentralPubMedGoogle Scholar
  31. Ott I (2009) On the medicinal chemistry of gold complexes as anticancer drugs. Coord Chem Rev 253:1670–1681CrossRefGoogle Scholar
  32. Pickens A, Orringer MB (2003) Geographical distribution and racial disparity in oesophageal cancer. Ann Thorac Surg 76:1367–1369CrossRefGoogle Scholar
  33. Pisani P, Parkin DM, Ferlay J (1993) Estimates of the worldwide mortality from eighteen major cancers in 1985: implications for prevention and projections of future burden. Int J Cancer 55:891–903PubMedCrossRefGoogle Scholar
  34. Poyraz M, Banti CN, Kourkoumelis N, Dokorou V, Manos MJ, Simčič M, Golič-Grdadolnik S, Mavromoustakos T, Giannoulis AD, Verginadis II, Charalabopoulos K, Hadjikakou SK (2011) Synthesis, structural characterization and biological studies of novel mixed ligand Ag(I) complexes with triphenylphosphine and aspirin or salicylic acid. Inorg Chim Acta 375:114–121CrossRefGoogle Scholar
  35. Rackham O, Nichols SJ, Leedman PJ, Berners-Price SJ, Filipovska A (2007) A gold(I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria. Biochem Pharmacol 74:992–1002PubMedCrossRefGoogle Scholar
  36. Rafique S, Idrees M, Nasim A, Akbar H, Athar A (2010) Transition metal complexes as potential therapeutic agents. Biotechnol Mol Biol Rev 5:38–45Google Scholar
  37. Rigobello MP, Folda A, Dani B, Menabó R, Scutari G, Bindoli A (2008) Gold(I) complexes determine apoptosis with limited oxidative stress in Jurkat T cell. Euro J Pharmacol 582:26–34CrossRefGoogle Scholar
  38. Segapelo TV, Guzei IA, Spencer LC, Van Zyl WE, Darkwa J (2009) (Pyrazoylmethyl)pyridine platinum(II) and gold(III) complexes: synthesis, structures and evaluation as anticancer agents. Inorg Chim Acta 362:3314–3324CrossRefGoogle Scholar
  39. Sumeruk R, Segal I, Te Winkel W, Van der Merwe CF (1992) Oesophageal cancer in three regions of South-Africa. S Afr Med J 81:91–93PubMedGoogle Scholar
  40. Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TPJ (1996) A comparison of multimodal therapy and surgery for oesophageal adenocarcinoma. N Engl J Med 335(7):462–467PubMedCrossRefGoogle Scholar
  41. Yilmaz VT, Gocmen E, Icsel C, Cengiz M, Susluer SY, Buyukgungor O (2014) Di- and polynuclear silver(I) saccharinate complexes of tertiary diphosphane ligands: synthesis, structures, in vitro DNA binding, and antibacterial and anticancer properties. J Biol Inorg Chem 19(1):29–44Google Scholar
  42. Zartilas S, Hadjikakou SK, Hadjiliadis N, Kourkoumelis N, Kyros L, Kubicki M, Baril M, Butler IS, Karkabounas S, Balzarini J (2009) Tetrameric 1:1 and monomeric 1:3 complexes of silver(I) halides with tri(p-tolyl)-phosphine: a structural and biological study. Inorg Chim Acta 362:1003–1010CrossRefGoogle Scholar
  43. Zong W-X, Thompson CB (2006) Necrotic death as a cell fate. Gene Dev 20:1–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zelinda Human
    • 1
  • Appollinaire Munyaneza
    • 2
  • Bernard Omondi
    • 2
  • Natasha M. Sanabria
    • 1
    • 2
  • Reinout Meijboom
    • 2
  • Marianne J. Cronjé
    • 1
  1. 1.Department of BiochemistryUniversity of JohannesburgAuckland Park, JohannesburgSouth Africa
  2. 2.Department of Chemistry, Research Centre for Synthesis and CatalysisUniversity of JohannesburgAuckland Park, JohannesburgSouth Africa

Personalised recommendations