Inactivation of bacterial and viral biothreat agents on metallic copper surfaces

Abstract

In recent years several studies in laboratory settings and in hospital environments have demonstrated that surfaces of massive metallic copper have intrinsic antibacterial and antiviral properties. Microbes are rapidly inactivated by a quick, sharp shock known as contact killing. The underlying mechanism is not yet fully understood; however, in this process the cytoplasmic membrane is severely damaged. Pathogenic bacterial and viral high-consequence species able to evade the host immune system are among the most serious lethal microbial challenges to human health. Here, we investigated contact-killing mediated by copper surfaces of Gram-negative bacteria (Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis tularensis and Yersinia pestis) and of Gram-positive endospore-forming Bacillus anthracis. Additionally, we also tested inactivation of monkeypox virus and vaccinia virus on copper. This group of pathogens comprises biothreat species (or their close relatives) classified by the Center for Disease and Control and Prevention (CDC) as microbial select agents posing severe threats to public health and having the potential to be deliberately released. All agents were rapidly inactivated on copper between 30 s and 5 min with the exception of B. anthracis endospores. For vegetative bacterial cells prolonged contact to metallic copper resulted in the destruction of cell structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Blattner FR, Plunkett G 3rd, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    CAS  PubMed  Article  Google Scholar 

  2. Casey AL, Adams D, Karpanen TJ et al (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74(1):72–77

    CAS  PubMed  Article  Google Scholar 

  3. Cox MM, Keck JL, Battista JR (2010) Rising from the ashes: DNA repair in Deinococcus radiodurans. PLoS Genet 6(1):e1000815

    PubMed Central  PubMed  Article  Google Scholar 

  4. DelVecchio VG, Kapatral V, Redkar RJ et al (2002) The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 99(1):443–448

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Elguindi J, Wagner J, Rensing C (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106(5):1448–1455

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Espírito Santo C, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74(4):977–986

    PubMed  Article  Google Scholar 

  7. Espírito Santo C, Morais PV, Grass G (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol 76(5):1341–1348

    PubMed Central  Article  Google Scholar 

  8. Espírito Santo C, Lam EW, Elowsky CG et al (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77(3):794–802

    PubMed  Article  Google Scholar 

  9. Espírito Santo C, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen 1(1):46–52

    Article  Google Scholar 

  10. Faundez G, Troncoso M, Navarrete P, Figueroa G (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4:19

    PubMed Central  PubMed  Article  Google Scholar 

  11. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78(6):1776–1784

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Kugelman JR, Johnston SC, Mulembakani PM et al (2014) Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg Infect Dis 20(2):232–239

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Kuroda M, Ohta T, Uchiyama I et al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357(9264):1225–1240

    CAS  PubMed  Article  Google Scholar 

  15. Larsson P, Oyston PC, Chain P et al (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37(2):153–159

    CAS  PubMed  Article  Google Scholar 

  16. Li J, Dennehy JJ (2011) Differential bacteriophage mortality on exposure to copper. Appl Environ Microbiol 77(19):6878–6883

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189(5):1616–1626

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Marennikova SS, Seluhina EM, Mal’ceva NN, Ladnyj ID (1972) Poxviruses isolated from clinically ill and asymptomatically infected monkeys and a chimpanzee. Bull World Health Organ 46(5):613–620

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Mathews S, Hans M, Mucklich F, Solioz M (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol 79(8):2605–2611

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in vitro study. J Hosp Infect 68(1):45–51

    CAS  PubMed  Article  Google Scholar 

  21. Mikolay A, Huggett S, Tikana L et al (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87(5):1875–1879

    CAS  PubMed  Article  Google Scholar 

  22. Nierman WC, DeShazer D, Kim HS et al (2004) Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci USA 101(39):14246–14251

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63(3):289–297

    CAS  PubMed  Article  Google Scholar 

  24. Noyce JO, Michels H, Keevil CW (2007) Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol 73(8):2748–2750

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Nyerges G, Szathmary J, Benko A (1968) Comparative laboratory study of vaccines prepared from the international reference strain and from the “Budapest” strain of vaccinia virus. Acta Microbiol Acad Sci Hung 15(3):199–205

    CAS  PubMed  Google Scholar 

  26. Parkhill J, Wren BW, Thomson NR et al (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413(6855):523–527

    CAS  PubMed  Article  Google Scholar 

  27. Quaranta D, Krans T, Espírito Santo C et al (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 77(2):416–426

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Sahl JW, Stone JK, Gelhaus HC et al (2013) Genome sequence of Burkholderia pseudomallei NCTC 13392. Genome Announc 1(3) pii: e00183-13

  29. Salgado CD, Sepkowitz KA, John JF et al (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34(5):479–486

    PubMed  Article  Google Scholar 

  30. Warnes SL, Keevil CW (2013) Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 8(9):e75017

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76(16):5390–5401

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Warnes SL, Highmore CJ, Keevil CW (2012) Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. mBio 3(6)

  33. Weaver L, Michels HT, Keevil CW (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect 68(2):145–151

    CAS  PubMed  Article  Google Scholar 

  34. Weaver L, Noyce JO, Michels HT, Keevil CW (2010) Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J Appl Microbiol 109(6):2200–2205

    CAS  PubMed  Article  Google Scholar 

  35. Wheeldon LJ, Worthington T, Lambert PA et al (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62(3):522–525

    CAS  PubMed  Article  Google Scholar 

  36. Wilks SA, Michels HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol 111(2):93–98

    PubMed  Article  Google Scholar 

  37. Wolff DA, Bubel HC (1964) The disposition of lysosomal enzymes as related to specific viral cytopathic effects. Virology 24:502–505

    CAS  PubMed  Article  Google Scholar 

  38. Zeiger M, Solioz M, Edongue H, Arzt E, Schneider AS (2014) Surface structure influences contact killing of bacteria by copper. MicrobiologyOpen 3(3):327–332

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Holger Scholz (InstMikroBioBw, München), Wolf Splettstößer (InstMikroBioBw, München) and Birgit Strommenger (RKI, Werningerode) for sharing bacterial strains. Thanks are due to Daniela Horenkamp and Jutta Brohl for assistance in BSL-3-work. This work was supported by a research grant from the International Copper Association (ICA)/Copper Development Association (CDA) and CES by a graduate fellowship of the Fundação para a Ciência e Tecnologia, Portugal.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregor Grass.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bleichert, P., Espírito Santo, C., Hanczaruk, M. et al. Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. Biometals 27, 1179–1189 (2014). https://doi.org/10.1007/s10534-014-9781-0

Download citation

Keywords

  • Metallic copper surfaces
  • Antimicrobial
  • Biothreat agent
  • Contact-killing